首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α为n维列向量,且A=E-ααT. (Ⅰ)证明:A2=A的充分必要条件是α为单位向量; (Ⅱ)若α为单位向量,求齐次线性方程组AX=0的通解; (Ⅲ)若α为单位向量,求矩阵A的特征值,判断A是否可相似对角化.
设α为n维列向量,且A=E-ααT. (Ⅰ)证明:A2=A的充分必要条件是α为单位向量; (Ⅱ)若α为单位向量,求齐次线性方程组AX=0的通解; (Ⅲ)若α为单位向量,求矩阵A的特征值,判断A是否可相似对角化.
admin
2021-03-18
44
问题
设α为n维列向量,且A=E-αα
T
.
(Ⅰ)证明:A
2
=A的充分必要条件是α为单位向量;
(Ⅱ)若α为单位向量,求齐次线性方程组AX=0的通解;
(Ⅲ)若α为单位向量,求矩阵A的特征值,判断A是否可相似对角化.
选项
答案
(Ⅰ)A
2
=(E-αα
T
)(E-αα
T
)=E-2αα
T
+αα
T
·αα
T
, 令α
T
·α=k,则A
2
=E-(2-k)αα
T
, 故A
2
=A的充分必要条件是k=1,即α为单位向量; (Ⅱ)由α为单位向量得A
2
=A,或A(E-A)=0, 则r(A)+r(E-A)≤n, 再由r(A)+r(E-A)≥r(E)=n得r(A)+r(E-A)=n, 而E-A=αα
T
,从而r(E-A)=r(αα
T
)=r(α)=1,于是r(A)=n-1, 方程组AX=0的基础解系含一个线性无关的解向量, 再由Aa=(E-αα
T
)α=α-α=0得α为AX=0的基础解系, 故AX=0的通解为X=ια(其中ι为任意常数). (Ⅲ)令α=[*] 由B
2
=B得B的特征值为0,1, 再由tr(B)=α
1
2
+α
2
2
+…+α
n
2
=α
T
α=1得 B的特征值为λ
1
=λ
2
=…=λ
n-1
=0,λ
n
=1, 故A的特征值为λ
1
=λ
2
=…=λ
n-1
=1,λ
n
=0. 因为A
T
=A,所以A可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Roy4777K
0
考研数学二
相关试题推荐
下列微分方程中(填序号)_______是线性微分方程.
设y=cosx2sin2,则y’=______.
设x为3维单位列向量,E为3阶单位矩阵,则矩阵E一xxT的秩为__________.
设A是三阶可逆矩阵,A的各行元素之和为k,A*的各行元素之和为m,则|A|=_________。
设4阶矩阵A的秩为2,则其伴随矩阵A*的秩为__________.
设函数则y=f(x)的反函数x=f-1(y)在y=0处的导数=__________。
方程组有解的充要条件是______________.
设f(χ,y)为连续函数,且f(χ,y)=y2+χf(χ,y)dχdy,则f(χ,y)=_______.
求极限:.
设有一薄板,其边沿为一抛物线,如图3—6所示,若顶点恰在水面上,试求薄板所受的静压力,并求将薄板下沉多深,压力加倍?
随机试题
杨某受某厂指派在本县范围内收购茶叶2万斤,厂方提供了介绍信、营业执照副本。杨某收购后未向税务机关纳税。县税务局知悉后即作出决定,杨某须缴纳增值税5000元。杨某不服,认为自己是接受某厂的指派,与该厂是委托关系,其税款应由厂方缴纳。县税务局未采纳杨某的意见,
下列哪项与氯化琥珀胆碱相符
房地产业可分为房地产开发经营业和房地产服务业。()
在建设项目决策和实施阶段,关于建设项目的技术、经济,管理和组织的规划、协调和控制等的具体工作主要由项目管理咨询单位完成,建设项目业主的主要任务是()。
关于成本和费用的说法中错误的是()。
常用的强制性工具包括()。
“近朱者赤,近墨者黑”为教师提高自身师德修养提供了哪种启示?()
[*]
下列程序段的执行结果为______。X=2Y=1IfX*Y<1ThenY=Y-1ElseY=-1PrintY-X>0
After15yearsintheUnitedStates,hehasfinallydecidedto______Americancitizenship.
最新回复
(
0
)