首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α为n维列向量,且A=E-ααT. (Ⅰ)证明:A2=A的充分必要条件是α为单位向量; (Ⅱ)若α为单位向量,求齐次线性方程组AX=0的通解; (Ⅲ)若α为单位向量,求矩阵A的特征值,判断A是否可相似对角化.
设α为n维列向量,且A=E-ααT. (Ⅰ)证明:A2=A的充分必要条件是α为单位向量; (Ⅱ)若α为单位向量,求齐次线性方程组AX=0的通解; (Ⅲ)若α为单位向量,求矩阵A的特征值,判断A是否可相似对角化.
admin
2021-03-18
68
问题
设α为n维列向量,且A=E-αα
T
.
(Ⅰ)证明:A
2
=A的充分必要条件是α为单位向量;
(Ⅱ)若α为单位向量,求齐次线性方程组AX=0的通解;
(Ⅲ)若α为单位向量,求矩阵A的特征值,判断A是否可相似对角化.
选项
答案
(Ⅰ)A
2
=(E-αα
T
)(E-αα
T
)=E-2αα
T
+αα
T
·αα
T
, 令α
T
·α=k,则A
2
=E-(2-k)αα
T
, 故A
2
=A的充分必要条件是k=1,即α为单位向量; (Ⅱ)由α为单位向量得A
2
=A,或A(E-A)=0, 则r(A)+r(E-A)≤n, 再由r(A)+r(E-A)≥r(E)=n得r(A)+r(E-A)=n, 而E-A=αα
T
,从而r(E-A)=r(αα
T
)=r(α)=1,于是r(A)=n-1, 方程组AX=0的基础解系含一个线性无关的解向量, 再由Aa=(E-αα
T
)α=α-α=0得α为AX=0的基础解系, 故AX=0的通解为X=ια(其中ι为任意常数). (Ⅲ)令α=[*] 由B
2
=B得B的特征值为0,1, 再由tr(B)=α
1
2
+α
2
2
+…+α
n
2
=α
T
α=1得 B的特征值为λ
1
=λ
2
=…=λ
n-1
=0,λ
n
=1, 故A的特征值为λ
1
=λ
2
=…=λ
n-1
=1,λ
n
=0. 因为A
T
=A,所以A可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Roy4777K
0
考研数学二
相关试题推荐
设a,b,a+b均非零,则行列式
已知α1,α2为2维列向量,矩阵A=(2α1+α2,α1-α2),B=(α1,α2).若|A|=6,|B|=_______.
设函数f(μ)可微,且f’(2)=2,则z=f(x2+y2)在点(1,1)处的全微分dz|(1,1)=________。
若方程组有解,则常数a1,a2,a3,a4应满足的条件是______.
=_____________.
设α=(1,一l,a)T,β=(1,a,2)T,A=E+αβT,且λ=3是矩阵A的特征值,则矩阵A属于特征值λ=3的特征向量是__________.
微分方程xy’+y=0满足初始条件y(1)=2的特解为_________。
求极限
设α1,α2,α3都是矩阵A的特征向量,特征值两两不同,记γ=α1+α2+α3.①证明γ,Aγ,A2γ线性无关,γ,Aγ,A2γ,A3γ线性相关.②设α1,α2,α3的特征值依次为1,-1,2,记矩阵B=(γ,Aγ,A2γ),β=A3γ
设函数f(χ)在[0,π]上连续,且∫0πf(χ)sinχdχ=0∫0πf(χ)cosχdχ,=0.证明:在(0,π)内f(χ)至少有两个零点.
随机试题
群体成员中原有的倾向性,通过群体的作用而得到加强,使一种观点或态度从原来的群体平均水平加强到具有支配性地位的现象叫作()
促进胰岛素分泌作用最强的激素是
细菌所致的发热是由于
河北某县以盛产优质红枣闻名遐迩。王甲、王乙、王丙三兄弟分别住在河北廊坊市、承德市和承德滦平县。3人合伙在河北某县开了一家红枣收购站(以下简称供方),但没有注册登记,专门收购当地农民的红枣,然后转卖。1994年5月,王甲与包头市东河区一家以红枣为生产原料的营
企业产品的竞争力不取决于下列()因素。
对QFII委托境内公司在我国从事证券买卖业务取得的差价收入,免征营业税。()
被审计单位某项应用控制由计算机自动执行,且在2012年度未发生变化。A注册会计师测试该项控制在2012年度运行有效性时,正确的做法有()。
建设民生工程,既要建立惠及全民的基本公共服务,又要安排好困难群众的生产生活,还要妥善解决涉及群众利益的热点、难点、焦点问题。由此,我们可以领悟到()。①既要着眼于民生中的全局性问题;又要解决其中的局部性问题②推进民生工程建设,有待于社会改革的整体推
软件设计模块化的目的是【】。
ScientistsMakeSweetDiscoveryGoodnewsforchocoholics:thetreatpreferredbymillionsallovertheworldisgoodforyou
最新回复
(
0
)