首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α为n维列向量,且A=E-ααT. (Ⅰ)证明:A2=A的充分必要条件是α为单位向量; (Ⅱ)若α为单位向量,求齐次线性方程组AX=0的通解; (Ⅲ)若α为单位向量,求矩阵A的特征值,判断A是否可相似对角化.
设α为n维列向量,且A=E-ααT. (Ⅰ)证明:A2=A的充分必要条件是α为单位向量; (Ⅱ)若α为单位向量,求齐次线性方程组AX=0的通解; (Ⅲ)若α为单位向量,求矩阵A的特征值,判断A是否可相似对角化.
admin
2021-03-18
88
问题
设α为n维列向量,且A=E-αα
T
.
(Ⅰ)证明:A
2
=A的充分必要条件是α为单位向量;
(Ⅱ)若α为单位向量,求齐次线性方程组AX=0的通解;
(Ⅲ)若α为单位向量,求矩阵A的特征值,判断A是否可相似对角化.
选项
答案
(Ⅰ)A
2
=(E-αα
T
)(E-αα
T
)=E-2αα
T
+αα
T
·αα
T
, 令α
T
·α=k,则A
2
=E-(2-k)αα
T
, 故A
2
=A的充分必要条件是k=1,即α为单位向量; (Ⅱ)由α为单位向量得A
2
=A,或A(E-A)=0, 则r(A)+r(E-A)≤n, 再由r(A)+r(E-A)≥r(E)=n得r(A)+r(E-A)=n, 而E-A=αα
T
,从而r(E-A)=r(αα
T
)=r(α)=1,于是r(A)=n-1, 方程组AX=0的基础解系含一个线性无关的解向量, 再由Aa=(E-αα
T
)α=α-α=0得α为AX=0的基础解系, 故AX=0的通解为X=ια(其中ι为任意常数). (Ⅲ)令α=[*] 由B
2
=B得B的特征值为0,1, 再由tr(B)=α
1
2
+α
2
2
+…+α
n
2
=α
T
α=1得 B的特征值为λ
1
=λ
2
=…=λ
n-1
=0,λ
n
=1, 故A的特征值为λ
1
=λ
2
=…=λ
n-1
=1,λ
n
=0. 因为A
T
=A,所以A可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Roy4777K
0
考研数学二
相关试题推荐
设x为3维单位列向量,E为3阶单位矩阵,则矩阵E一xxT的秩为__________.
设连续非负函数f(x)满足f(x)f(-x)=1,则=_____
设矩阵,则A3的秩为_________。
设函数则y=f(x)的反函数x=f-1(y)在y=0处的导数=__________。
设z=xg(x+y)+yφ(xy),其中g,φ具有二阶连续导数,则=__________.
求极限
设(I)证明f(x)在x=0处连续;(Ⅱ)求区间(-1,﹢∞)内的f’(x),并由此讨论区间(-1,﹢∞)内f(x)的单调性.
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
用函数极限的定义证明下列极限:
设有一薄板,其边沿为一抛物线,如图3—6所示,若顶点恰在水面上,试求薄板所受的静压力,并求将薄板下沉多深,压力加倍?
随机试题
A.水成像B.功能性MRI成像C.脂肪抑制D.MRI对比增强检查E.MR血管造影静脉注入顺磁性物质
不能引起特异性感染的是
下列哪项不是毒理学试验中溶剂的选择原则
具有一定毒性,不宜持续和过量服用的药物是
甲公司申请强制执行乙公司的财产,法院将乙公司的一处房产列为执行标的。执行中,丙银行向法院主张,乙公司已将该房产抵押贷款,并以自己享有抵押权为由提出异议。乙公司否认将房产抵押给丙银行。经审查,法院驳回丙银行的异议。丙银行拟向法院起诉,关于本案被告的确定,下列
可以直接使用现金结算的最高限额是( )元。
上市公司应将年度报告备置于()。
任何公司都是“________人”,如果不用严格守法就会轻松获利,那么其就没有任何守法的自觉性和主动性。从这个意义上讲,守法的典范不是“自动生成”的,而是环境________的结果。在不同的制度环境中,天使和魔鬼的角色是很容易转变的。填入画横线部分最恰当
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
Atatimewheneveryone’smindistheexplosionsofthemoment,itmightseemobtuseofmetodiscussthefourteenthcentury.Bu
最新回复
(
0
)