首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
admin
2019-08-12
82
问题
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
选项
答案
构造辅助函数F(x)=f(x)e
x
,由于f(x)可导,故F(x)可导,设x
1
和x
2
为f(x)的两个零点,且x
1
<x
2
,则F(x)在[x
1
,x
2
]上满足罗尔定理条件,由罗尔定理,至少存在一点ξ∈(x
1
,x
2
),使得F’(ξ)=0,即f’(ξ)e
ξ
+f(ξ)e
ξ
=e
ξ
[f’(ξ)+f(ξ)]=0.由于e
ξ
≠0,因此必有f’(ξ)+f(ξ)=0.所以f(x)的两个零点之间一定有f(x)+f’(x)的零点.
解析
f(x)的两个零点x
1
,x
2
(不妨设x
1
<x
2
)之间有f(x)+f’(x)的零点问题,相当于在(x
1
,x
2
)内有f(x)+f’(x)=0的点存在的问题.若能构造一个函数F(x),使F’(x)=[f(x)+f’(x)]φ(x),而φ(x)≠0,则问题可以得到解决.由(e
x
)’=e
x
可以得到启发,令F(x)=f(x)e
x
.
转载请注明原文地址:https://kaotiyun.com/show/S5N4777K
0
考研数学二
相关试题推荐
(14年)设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:(I)0≤∫axg(t)dt≤(x-a),x∈[a,b](Ⅱ)≤∫abf(x)g(x)dx.
(11年)设函数y=y(x)由参数方程确定,求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点.
(09年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0.δ)(δ>0)内可导,且,则f+’(0)存在
(13年)设函数y=f(x)由方程cos(xy)+lny—x=1确定,则
(16年)已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x一1)y"一(2x+1)y’+2y=0的两个解.若u(-1)=e.u(0)=一1,求u(x),并写出该微分方程的通解.
(99年)设函数f(x)在闭区间[一1,1]上具有三阶连续导数.且f(一1)=0,f(1)=1,f’(0)=0,证明:在开区间(一1,1)内至少存在一点ξ,使f"(ξ)=3.
(95年)如图2.2所示,设曲线L的方程为y=f(x),且y">0,又MT、MP分别为该曲线在点M(x0,y0)处的切线和法线.已知线段MP的长度为(其中y’0=y’(x0),y0"=y"(x0)),试推导出点P(ξ,η)的坐标表达式.
(2003年)设三阶方阵A、B满足A2B-A-B=E,其中E为三阶单位矩阵,A=,则|B|=______.
(2003年)设α为3维列向量,αT是α的转置.若ααT=,则αTα=_______.
设A为m×n实矩阵,E为n阶单位矩阵,矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
随机试题
患者,女,69岁。因左眼视力下降伴眼胀2周就诊。无头痛、虹视、视物变形,未行特殊诊治。有慢性阻塞性气道疾病13年。体检:矫正视力OD1.0、OS0.6,眼压OD17mmHg、OS37mmHg,角膜透明,色素性KP(+),前房轴深4CT,房水闪辉(十
A.阿司匹林B.肝素C.链激酶D.香豆素类E.氨甲环酸用于血小板功能亢进引起的血栓栓塞性疾病的防治的是
给予肝性昏迷患者肠道抗生素的主要目的是
药品质量公告不当的,发布部门应当自确认公告不当之日起_________内,在原公告范围内予以更正()
下列关于地震自救表述不正确的是()。
关于行政诉讼原告资格的表述中,下列哪一选项是正确的?()
18,-2,-2,22,74,()。
Linux操作系统中,网络管理员可以通过修改__________文件对Web服务器端口进行配置。(2009年下半年试题)
执行下列哪一条指令后,就能用条件转移指令判断AL和BL寄存器中的最高位是否相同?( )
Manybelievethat________hasthebestchanceofbecomingauniversaltongue.
最新回复
(
0
)