首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (I)证明f(x)在x=0处连续; (Ⅱ)求区间(-1,﹢∞)内的f’(x),并由此讨论区间(-1,﹢∞)内f(x)的单调性.
设 (I)证明f(x)在x=0处连续; (Ⅱ)求区间(-1,﹢∞)内的f’(x),并由此讨论区间(-1,﹢∞)内f(x)的单调性.
admin
2019-08-11
85
问题
设
(I)证明f(x)在x=0处连续;
(Ⅱ)求区间(-1,﹢∞)内的f
’
(x),并由此讨论区间(-1,﹢∞)内f(x)的单调性.
选项
答案
(I)由题设当x∈(-1,﹢∞),但x≠0时f(x)=[*],所以 [*] 所以f(x)在x=0处连续. (Ⅱ)[*] 下面求区间(-1,﹢∞)内x≠0处的f
’
(x): [*] 为讨论f
’
(x)的符号,取其分子记为g(x),即令 g(x)=(1﹢x)ln
2
(1﹢x)-x
2
,有g(0)=0. g
’
(x)=21n(1﹢x)﹢ln
2
(1﹢x)-2x,有g
’
(0)=0, 当-1<x<﹢∞,但x≠0时, [*] 由泰勒公式有当-1<x<﹢∞,但x≠0时,g(x)=[*]g
”
(ξ)x
2
<0,ξ介于0与x之间. 所以当-1<x<﹢∞,但x≠0时,f
’
(x)<0.又由f
’
(0)=[*],所以f
’
(x)<0(-1<x<﹢∞), 由定理:设f(x)在区间(a,b)内连续且可导,导数f
’
(x)<0,则f(x)在区间(a,b)内为严格单调减少.故f(x)在区间(-1,﹢∞)内严格单调减少.
解析
转载请注明原文地址:https://kaotiyun.com/show/1yN4777K
0
考研数学二
相关试题推荐
设F(u,v)具有一阶连续偏导数,且z=z(x,y)由方程所确定.又设题中出现的分母不为零,则()[img][/img]
设微分方程xyˊ+2y=2(ex-1).求上述微分方程的通解,并求使y(x)存在的那个解(将该解记为y0(x),以及极限值y0(x);[img][/img]
(01年)已知函数f(x)在区间(1一δ,1+δ)内具有二阶导数,f’(x)严格单调减少,且f(1)=f’(1)=1,则
(12年)过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点.区域D由L与直线AB围成.求区域D的面积及D绕x轴旋转一周所得旋转体的体积.
(14年)设函数f(u)具有2阶连续导数,z=f(excosy)满足若f(0)=0,f’(0)=0,求f(u)的表达式.
(10年)3阶常系数线性齐次微分方程y"’一2y"+y’一2y=0的通解为y=_______.
(00年)设函数f(x),g(x)是大于零的可导函数,且f’(x)g(x)一f(x)g’(x)<0,则当a<x<b时有
(10年)设函数u=f(x,y)具有二阶连续偏导数,且满足等式确定a,b的值,使等式在变换ξ=x+ay.η=x+by下简化为
(03年)若x→0时.与xsinx是等价无穷小.则a=______.
(2002年)已知A,B为3阶矩阵,且满足2A-1B=B-4E,其中E是3阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若B=,求矩阵A.
随机试题
国际政治
根据《劳动合同法》的规定,劳动者有下列哪些情形之一的,用人单位可以解除劳动合同()
最简单的甘油磷脂是
男,32岁。交通事故致头面部复合伤。伤后昏迷45min,造成吸人性窒息,正确的处理方法是
男,35岁。从高处跳下时,双下肢顿时感到无力。
私营企业主王某办公室的一台DVD播放机无法正常使用,遂通知工作人员刘某拿出去扔掉。刘某将该播放机修理好后拿回家使用。王某得知该播放机能够正常使用后,要求刘某返还。关于该播放机归属的说法,正确的是()。(2010年单项选择第5题)
下列不属于房地产经纪机构人力资源管理中的内部选拔的优点的是()。
在现行公开招标方式下,国债的销售价格是()。
辩证的否定观认为新事物必然取代旧事物,这是因为
若对n个元素进行直接插入排序,则进行第i趟排序过程前,有序表中的元素个数为______。
最新回复
(
0
)