首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶方阵A的特征值为1,-2,3,则A的行列式|A|中元素a11,a22,a33的代数余子式的和A11+A22+A33=( )
已知3阶方阵A的特征值为1,-2,3,则A的行列式|A|中元素a11,a22,a33的代数余子式的和A11+A22+A33=( )
admin
2021-04-16
75
问题
已知3阶方阵A的特征值为1,-2,3,则A的行列式|A|中元素a
11
,a
22
,a
33
的代数余子式的和A
11
+A
22
+A
33
=( )
选项
A、-4
B、4
C、-5
D、5
答案
C
解析
|A|=1×(-2)×3=-6≠0,故A可逆,且A
*
=|A|A
-1
=-6A
-1
,
由题意知A
-1
的特征值为1,-1/2,1/3,故A
*
的特征值为
λ
1
*
=(-6)×1=-6,λ
2
*
=(-6)×(-1/2)=3,λ
3
*
=(-6)×(1/2)=-2,故A
11
+A
22
+A
33
=tr(A
*
)=λ
1
*
+λ
2
*
+λ
3
*
=(-6)+3+(-2)=-5。
转载请注明原文地址:https://kaotiyun.com/show/Rpx4777K
0
考研数学三
相关试题推荐
[*]
[*]
设二次型F(x1,x2,x3)=xTAx=ax21+6x22+3x23-4x1x2-8x1x3-4x2x3,其中-2是二次型矩阵A的一个特征值。(Ⅰ)求a的值;(Ⅱ)试用正交变换将二次型f化为标准形,并写出所用的正交变换。
曲线渐近线的条数为()
设矩阵有解但不唯一。(I)求a的值;(Ⅱ)求可逆矩阵P,使得P一1AP为对角矩阵;(Ⅲ)求正交矩阵Q,使得QTAQ为对角矩阵。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(Ⅰ)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设F(x)是以T为周期的可微函数,则下列函数中以T为周期的函数是()
设随机事件A与B为对立事件,0<P(A)<1,则一定有
设矩阵A=(aij)3×3满足A*=AT,其中A*是A的伴随矩阵,AT为A的转置矩阵。若a11,a12,a13为三个相等的正数,则a11为()
随机试题
A.甘氨酸B.色氨酸C.酪氨酸D.谷氨酸去甲肾上腺素合成的原料是
某医院血库的负责人甲和工作人员乙将不符合国家规定标准的血液用于患者,造成患者丙经24小时抢救才脱离危险。此事件有以下法律责任,除了
下列评价指标中属于中期效果评价指标的是()
男孩,4岁。生长落后,活动后气促。查体:胸骨左缘第2~3肋间有3/6级收缩期喷射性杂音,P2亢进。X线片示右心房、右心室扩大。目前最佳的治疗方案是
A.最早的一部中医典籍B.创立药物与针灸并用之法C.开创内伤杂病辨证论治体系D.我国第一部证候学专著E.第一部传染病专著《金匮要略》是
市场监督管理部门不予受理的情形有
如果电用完了,电动自行车就无法继续前行。我的电动自行车不能继续前行,因此,电一定用完了。以下哪项推理与题干的最为类似?()
马克思恩格斯在《共产党宣言》中指出:“资产阶级的灭亡和无产阶级的胜利是同样不可避免的。”这就是我们常说的资本主义必然灭亡和社会主义必然胜利的“两个必然”。马克思在《(政治经济学批判)序言》中又提出了“两个决不会”即:“无论哪一个社会形态,在它所能容纳的全部
证明:方程xa=lnx(a<0)在(0,+∞)上有且仅有一个实根.
Whoisthespeaker?
最新回复
(
0
)