首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:二次型f(x)=xTAx在||x||=1时的最大值为矩阵A的最大特征值。
证明:二次型f(x)=xTAx在||x||=1时的最大值为矩阵A的最大特征值。
admin
2020-03-05
27
问题
证明:二次型f(x)=x
T
Ax在||x||=1时的最大值为矩阵A的最大特征值。
选项
答案
A为实对称矩阵,则存在正交矩阵Q,使得 QAQ
-1
=diag(λ
1
,λ
2
,…,λ
n
)=A, 其中λ
1
,λ
2
,…,λ
n
为A的特征值,不妨设λ
1
最大。 作正交变换y=Qx,即X=Q
-1
y=Q
T
y,则 f=x
T
Ax=y
T
QAQ
T
y=y
T
Λy=[*], 因为y=Qx,所以当||x||=1时,有 ||x||
2
=x
T
x=y
T
QQ
T
y=||y||
2
=1, [*] 又当y
1
=1,y
2
=y
3
=…=y
n
=0时,f=λ
1
,所以f
max
=λ
1
。
解析
转载请注明原文地址:https://kaotiyun.com/show/RuS4777K
0
考研数学一
相关试题推荐
幂级数在收敛域(一1,1)内的和函数S(x)为__________.
设有齐次线性方程组AX=O和BX=O,其中A,B均为m×n矩阵,现有4个命题:(1)若AX=O的解都是BX=O的解,则r(A)≥r(B);(2)若r(A)≥r(B),则AX=O的解都是BX=O的解;(3)若AX=O与BX=O同
交换积分次序=_________.
已知P-1AP=,α1是矩阵A属于特征值λ=1的特征向量,α2与α3是矩阵A属于特征值λ=5的特征向量,那么矩阵P不能是()
设正项级数发散,则中结论正确的个数为()
设总体X—E(λ),则来自总体X的简单随机样本X1,X2,…,Xn的联合概率密度f(x1,x2,…,xn)=______.
证明二重极限不存在。
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f"(ξ)|≥|f(b)一f(a)|.
[2009年]如图所示,正方形{(x,y)||x|≤1,|y|≤1),被其对角线划分为四个区域Dk(k=1,2,3,4),Ik=ycosxdxdy,则{Ik}=().[img][/img]
设某次考试的成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.附表:t分布表P(t(n)≤tp(n))=p
随机试题
土地抵押权变更登记,下列()情形的申请人包括抵押人、抵押权人和受让人。
如图4-60所示均质圆盘放在光滑水平面上受力F作用,则质心C的运动为()。
砂砾石地基的特点包括()。
下列选项中,属于当事人提起诉讼必须符合的条件的有()。
人工智能听起来很遥远,其实已经______到我们的日常工作和生活中了。人工智能的应用,让生活更便捷、更有乐趣,节约时间、解放体力,甚至未来机器将______人类进行一些基础性的劳作,这个场景令人憧憬。
快递包装标准滞后、回收循环难度大、环保意识不足,是阻碍快递包装绿色化的三大瓶颈。要打破这些瓶颈,还有大量的工作要做。比如,必须解决现行标准多为推荐性指标、约束力不强、执行有难度等问题,出台国家级的强制性标准;要解决对快递件的“五花大绑”、过度包装问题,首先
阅读下述材料,谈谈你对班主任做法的认识。一位家长在星期一发现儿子上学时磨磨蹭蹭,遂追问是怎么回事,孩子犹豫了半天才道出实情。原来在上个星期二早上,班主任老师召开全班同学会议,用无记名的方式评选3名“坏学生”,因有两名同学在最近违反了学校纪律,无可
A、 B、 C、 D、 B
ALACRITY:
A、Becausewemightbeofferedadishofinsects.B、Becausenothingbutfreshlycookedinsectsareserved.C、Becausesomeyuppies
最新回复
(
0
)