首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关的解,则该方程的通解为( )
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关的解,则该方程的通解为( )
admin
2019-02-23
48
问题
设φ
1
(x),φ
2
(x),φ
3
(x)为二阶非齐次线性方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关的解,则该方程的通解为( )
选项
A、C
1
[φ
1
(x)+φ
2
(x)]+C
2
φ
3
(x)。
B、C
1
[φ
1
(x)一φ
2
(x)]+C
2
φ
3
(x)。
C、C
1
[φ
1
(x)+φ
2
(x)]+C
2
[φ
1
(x)一φ
3
(x)]。
D、C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
1
+C
2
+C
3
=1。
答案
D
解析
因为φ
1
(x),φ
2
(x),φ
3
(x)为方程y"+a
1
(x)y’+a
2
(x)y=f(x)的三个线性无关解,所以φ
1
(x)一φ
3
(x),φ
2
(x)一φ
3
(x)为所对应齐次方程y"+a
1
(x)y’+a
2
(x)y=0的两个线性无关解。根据非齐次线性方程通解的结构,方程y"+a
1
(x)y’+a
2
(x)y=f(x)的通解为
C
1
[φ
1
(x)一φ
3
(x)]+C
2
[φ
2
(x)一φ
3
(x)]+φ
3
(x),
即C
1
φ
1
(x)+C
2
φ
2
(x)+C
3
φ
3
(x),其中C
3
=1一C
1
—C
2
或C
1
+C
2
+C
3
=1,故选D。
转载请注明原文地址:https://kaotiyun.com/show/Wm04777K
0
考研数学一
相关试题推荐
设f(x)在x=0的某邻域内有定义,且满足
设(χ,y,z)=eχ+y2z,其中z=z(χ,y)是由方程χ+y+z+χyz=0所确定的隐函数,则f′χ(0,1,-1)=_______。
根据k的不同的取值情况,讨论方程χ3-3χ+k=0实根的个数。
设f(u)有连续的二阶导数,且z=f(eχsiny)满足方程=e2χz,求f(u)。
重复独立掷两个均匀的骰子,则两个骰子的点数之和为4的结果出现在它们点数之和为7的结果之前的概率为_____.
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________.
设Fn(x)是经验分布函数,基于来自总体X的容量为n的简单随机样本,F(x)是总体X的分布函数,则下列命题错误的为:Fn(x)对于每个给定的x,().
设A是3阶实对称矩阵,A的每行元素的和为5,则二次型f(x1,x2,x3)=xTAx在x0=(1,1,1)T的值f(1,1,1)=x0TAx0=_______。
设A,B为同阶方阵,如果A,B相似,试证A,B的特征多项式相等;
设A,B为两个n阶矩阵,下列结论正确的是().
随机试题
ExerciseIsGoodforYourBodyandYourMindA)Thebenefitsofexercisearewidelyknown:ithelpsyoulivelongerandlowe
物质性质量标准的主要形式是
A.促进阴毛、腋毛的生长B.使增生期内膜转化为分泌期内膜C.使阴道上皮增生、角化D.促进卵泡的发育E.使基础体温排卵后降低0.3一0.5℃144孕激素的作用?
关于市场支配地位推定制度,下列哪些选项是符合我国《反垄断法》规定的?
某公司5年前与一办公楼所有权人签订了租赁合同,租用其中1000m2的面积,约定租赁期限为20年。第一年租金为24万元,以后每年租金在上一年的基础增加1万元,从第8年开始,租金保持固定不变。现市场上类似办公楼月租金为30元/m2,假设折现率为10%,则目前承
质量改进团队形式有()。
干散货的装卸采取()方式。
下列关于爱岗敬业的说法中,你认为正确的是()。
社会主义核心价值观的内容中,与实现国家治理体系和治理能力现代化的要求相契合的是()
Amongthekindsofsocialgesturesmostsignificantforsecond-languageteachersarethosewhichare【B1】______informbutdiffer
最新回复
(
0
)