首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=_____________。
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=_____________。
admin
2018-12-27
33
问题
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C
1
+C
2
x)e
x
,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=_____________。
选项
答案
y=-xe
x
+x+2=x(1-e
x
)+2
解析
由齐次微分方程y"+ay’+by=0的通解为y=(C
1
+C
2
x)e
x
可知λ=1是特征方程λ
2
+aλ+b=0的重根,从而可得a=-2,b=1。则原齐次微分方程为y"-2y’+y=x。
设特解y
*
=Ax+B,则(y
*
)’=A,(y
*
)"=0。分别将其代入原微分方程,有-2A+Ax+B=x,比较x的系数知,A=1。于是有-2+B=0,即B=2。所以特解y
*
=x+2。
故非齐次微分方程的通解y=(C
1
+C
2
x)e
x
+x+2,将y(0)=2,y’(0)=0代入,得C
1
=0,C
2
=-1。
因此满足条件的解y=-xe
x
+x+2=x(1-e
x
)+2。
转载请注明原文地址:https://kaotiyun.com/show/S1M4777K
0
考研数学一
相关试题推荐
以yOz坐标面上的平面曲线段y=f(x)(0≤z≤h)绕z轴旋转所构成的旋转曲面和xOy坐标面围成一个无盖容器,已知它的底面积为16πcm2,如果以3cm3/s的速率把水注入容器,水表面的面积以πcm2/s增大,试求曲线y=f(z)的方程.
设fx’(0,0)=1,fy’(0,0)=2,则
通过直线x=2t一1,y=3t+2,z=2t一3和直线x=2t+3,y=3t一1,z=2t+1的平面方程为
设函数f(x)可导,且f(0)=0,F(x)=∫0xtn-1f(xn一tn)dt,试求
设u,v是x,y的函数,且
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程y”+ay’+by=cex的一个特解,试确定常数a,b,c及该方程的通解.
(88年)求幂级数的收敛域.
(93年)设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0,证明f(x)在(0,+∞)内有且仅有一个零点.
(96年)设A=I一ξξT,其中I是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:(1)A2=A的充要条件是ξTξ=1;(2)当ξTξ=1时,A是不可逆矩阵.
(94年)设4元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1).(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说
随机试题
针对固定资产折旧计提不足的错报风险,以下事项中,最相关的是()。
病理性冲动传导异常包括
手外伤正确的术后处理是
细胞凋亡时核DNA双链发生规律性断裂,形成核小体的片段长度是
A.崩解剂B.填充剂C.黏合剂D.润滑剂E.润湿剂乳糖可作
牙周病的局部促进因素如下,除外
成套房屋的套内建筑面积包含()等部分的面积。
根据现行规定,建设项目施工图设计文件未经审查批准不得使用。在施工图设计文件编制完成后,( )应将其报县级以上人民政府建设行政主管部门或其他有关部门审查。
学生动作技能的形成需要有一定的外部条件,下列选项中,属于动作技能形成的外部条件的是()
新印象主义的发起人是()。
最新回复
(
0
)