首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=_____________。
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=_____________。
admin
2018-12-27
63
问题
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C
1
+C
2
x)e
x
,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=_____________。
选项
答案
y=-xe
x
+x+2=x(1-e
x
)+2
解析
由齐次微分方程y"+ay’+by=0的通解为y=(C
1
+C
2
x)e
x
可知λ=1是特征方程λ
2
+aλ+b=0的重根,从而可得a=-2,b=1。则原齐次微分方程为y"-2y’+y=x。
设特解y
*
=Ax+B,则(y
*
)’=A,(y
*
)"=0。分别将其代入原微分方程,有-2A+Ax+B=x,比较x的系数知,A=1。于是有-2+B=0,即B=2。所以特解y
*
=x+2。
故非齐次微分方程的通解y=(C
1
+C
2
x)e
x
+x+2,将y(0)=2,y’(0)=0代入,得C
1
=0,C
2
=-1。
因此满足条件的解y=-xe
x
+x+2=x(1-e
x
)+2。
转载请注明原文地址:https://kaotiyun.com/show/S1M4777K
0
考研数学一
相关试题推荐
设A、B均是n阶矩阵,且|A|=2,|B|=一3,A*为A的伴随矩阵,则行列式|2A*B-1|=_____.
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点,若极径OM0,OM与曲线L所围成的曲边扇形面积值等于L上M0,M两点间弧长值的一半,求曲线L的方程.
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程y”+ay’+by=cex的一个特解,试确定常数a,b,c及该方程的通解.
讨论级数的敛散性.
(99年)求I=∫L(exsiny一b(x+y))dx+(excosy—ax)dy,其中a,b为正的常数,L为从点A(2a,0)沿曲线y=到点O(0,0)的弧.
(10年)设二维随机变量(X,Y)的概率密度为一∞<x<+∞,一∞<y<+∞,求常数A及条件概率密度fY|X(y|x).
(05年)设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.(I)证明:对右半平面x>0内的任意分段光滑简单闭曲线C,有(Ⅱ)求函数φ(y)的表达式.
求数列极限:(I)(M>0为常数);(II)设数列|xn|有界,求
计算下列第一型曲线积分:其中L是以原点为中心,R为半径的右上四分之一圆周,即:x2+y2一R2,x≥0,y≥0;
求曲线积分I=∫L2yzdx+(2z一z2)dy+(y2+2xy+3y)dz,其中L为闭曲线从原点向L看去,L沿顺时针方向.
随机试题
关于保健按摩师职业形象的叙述错误的是()。
我们往往认识不到的是,看似无用的东西也许从长远来看大有裨益。
关于条件反射的叙述,正确的是
国际上主要的金融监管体制有()。
ROE的计算公式为()。
实施部门预算支出绩效考评的原则有( )。
刘基刘基,字伯温,青田人。基幼颖异。元至顺间举进士,除高安丞,有廉直声。行省辟之,谢去。及太祖下金华,定括苍,闻基名,以币聘,基未应。总制孙炎再致书固邀之,基始出。既至,陈时务十八策,太祖大喜,筑礼贤馆以处基等,宠礼甚至。会陈友谅陷太平,谋东
设函数f(x)=在x=0处.f(x)()
在Internet域名系统的资源记录中,表示主机地址的对象类型为()。
A、Tookbalancedmealswithchampagne.B、Atevegetablesandfruitonly.C、Refrainedfromfishormeat.D、Avoidedeatingrichfood
最新回复
(
0
)