首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=可逆,α=为A*对应的特征向量. (1)求a,b及α对应的A*的特征值; (2)判断A可否对角化.
设矩阵A=可逆,α=为A*对应的特征向量. (1)求a,b及α对应的A*的特征值; (2)判断A可否对角化.
admin
2017-09-15
48
问题
设矩阵A=
可逆,α=
为A
*
对应的特征向量.
(1)求a,b及α对应的A
*
的特征值;
(2)判断A可否对角化.
选项
答案
(1)显然a也是矩阵A的特征向量,令Aα=λ
1
α则有 [*] |A|=12,设A的另外两个特征值为λ
2
,λ
3
,由[*]得λ
2
=λ
3
=2.α对应的A
*
的特征值为[*]=4. (2)2E-A=[*],因为r(2E-A)=2,所以λ
2
=λ
3
=2只有一个线性无关的特征向量,故A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/SBk4777K
0
考研数学二
相关试题推荐
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
设A为n阶可逆矩阵,则下列结论正确的是().
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
n阶矩阵A具有n个不同的特征值是A与对角矩阵相似的
随机试题
下列关于权力导向型企业的说法中,不正确的是()。
国家工作人员挪用救灾款归个人使用的,()。
试述水土流失的预防措施。
合同磋商的内容。
会计人员每年接受培训的时间,累计不少于()
男性,30岁,左小腿上段有一窦道,反复流脓,排碎骨块12年,近半个月发热,伤口红肿流脓,X线片显示:左胫骨上段增粗,见死骨,其周围有新生骨。在应用抗生素的同时给予
咳铁锈色痰最常见的疾病是
房地产企业是吸纳金融机构信贷资金最多的行业。()
设f(χ,y)=(1)f(χ,y)在点(0,0)处是否连续?(2)f(χ,y)在点(0,0)处是否可微?
Whattimeisitnow?
最新回复
(
0
)