首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2004年试题,三(9))设矩阵的特征方程有一个二重根,求口的值,并讨论A是否可相似对角化.
(2004年试题,三(9))设矩阵的特征方程有一个二重根,求口的值,并讨论A是否可相似对角化.
admin
2013-12-18
63
问题
(2004年试题,三(9))设矩阵
的特征方程有一个二重根,求口的值,并讨论A是否可相似对角化.
选项
答案
由题设,[*].则|A—λE|=0,即[*],可得出(λ一2)(λ
2
一8λ+18+3a)=0若A=2是特征方程的二重根,则2
2
一8×2+18+3a=0,解之得a=一2,此时λ
1
=λ
2
=2,λ
3
=6,且[*]显然r(A一2层)=1,所以对应特征值2有两个线性无关的特征向量,因此A可相似对角化;若λ=2不是特征方程的二重根,则λ
2
一8λ+18+3a=0有二重根,即64—4(18+3a)=0,解之得a=一2/3.此时λ
1
=2,λ
2
=λ
3
=4,且[*]显然r(A一4E)=2,所以对应于特征值4只有一个线性无关的特征向量,所以A不可相似对角化.
解析
如果A~A,且λ
0
是k重特征值,则A
0
应有k个线性无关的特征向量,即齐次方程组(λ
0
E—A)x=0的基础解系,应含n—r(λE—A)=k个向量,故可通过秩r(λ
0
E—A)来判定A是否能对角化.
转载请注明原文地址:https://kaotiyun.com/show/3934777K
0
考研数学二
相关试题推荐
(2009年)设某产品的需求函数为Q=Q(p),其对价格p的弹性ξp=0.2,则当需求量为10000件时,价格增加1元会使产品收益增加______元。
(2015年)设函数f(x)在(一∞,+∞)连续,其二阶导函数f"(x)的图形如右下图所示,则曲线y=f(x)的拐点个数为()
(01年)一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.(Ф(2):0.977,其中Ф(χ)是标准正
(1991年)求极限其中n为给定的自然数.
[2010年]设向量组(I):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示.下列命题中正确的是().
[2006年]设三阶实对称矩阵A的各行元素之和都为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T都是齐次线性方程组AX=0的解.求A及[A-(3/2)E]6.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2。且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
(2001年)求二重积分的值,其中D是由直线y=x,y=一1及x=1围成的平面区域.
(08年)设z=z(χ,y)是由方程χ2+y2-z=φ(χ+y+z)所确定的函数,其中φ具有2阶导数,且φ′≠-1.(Ⅰ)求dz;(Ⅱ)记u(χ,y)=,求.
(2006年)设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是
随机试题
甲为乙拍摄照片后将照片发到朋友圈,丙看到后觉得很有趣,遂将该照片做成搞笑表情包出售。丙侵犯了
以下图例,()表示调节阀。
对于亚慢性和慢性毒性试验的结果,要求
A.生姜B.杏仁C.干姜D.熟地黄E.石膏阳和汤组成药物中含有
在计算消费税应纳税额时,受托加工应征消费税的消费品所代收代缴的消费税应计入销售额中。()
直接标价法下1美元=7元人民币,l英镑=2美元,则相对中国人而言,直接标价法下人民币元与英镑的汇率为()。
根据企业国有资产法律制度的规定,某重要的国有资本控股公司的下列事项中,应当报请本级人民政府批准的有()。
已知数列a,5,b既是等差数列又是等比数列,则其公差是__________,其公比是__________.
在考生文件夹下完成如下操作:(1)打开数据库"外汇",通过"外币代码"字段为"外汇代码"和"外汇账户"建立永久联系;(2)新建一个名为"外汇管理"的项目文件,将数据库"外汇"加入"外汇管理"项目中;(3)修改mymenu菜单文件,为"文件"下的子菜单
NarratorListentopartofalectureinageographyclass.Nowgetreadytoanswerthequestions.Youmayuseyournot
最新回复
(
0
)