首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2004年试题,三(9))设矩阵的特征方程有一个二重根,求口的值,并讨论A是否可相似对角化.
(2004年试题,三(9))设矩阵的特征方程有一个二重根,求口的值,并讨论A是否可相似对角化.
admin
2013-12-18
58
问题
(2004年试题,三(9))设矩阵
的特征方程有一个二重根,求口的值,并讨论A是否可相似对角化.
选项
答案
由题设,[*].则|A—λE|=0,即[*],可得出(λ一2)(λ
2
一8λ+18+3a)=0若A=2是特征方程的二重根,则2
2
一8×2+18+3a=0,解之得a=一2,此时λ
1
=λ
2
=2,λ
3
=6,且[*]显然r(A一2层)=1,所以对应特征值2有两个线性无关的特征向量,因此A可相似对角化;若λ=2不是特征方程的二重根,则λ
2
一8λ+18+3a=0有二重根,即64—4(18+3a)=0,解之得a=一2/3.此时λ
1
=2,λ
2
=λ
3
=4,且[*]显然r(A一4E)=2,所以对应于特征值4只有一个线性无关的特征向量,所以A不可相似对角化.
解析
如果A~A,且λ
0
是k重特征值,则A
0
应有k个线性无关的特征向量,即齐次方程组(λ
0
E—A)x=0的基础解系,应含n—r(λE—A)=k个向量,故可通过秩r(λ
0
E—A)来判定A是否能对角化.
转载请注明原文地址:https://kaotiyun.com/show/3934777K
0
考研数学二
相关试题推荐
设函数f(x)在(一∞,+∞)内连续,其导函数的图形如图所示,则__________.
设A为3阶矩阵,P为3阶可逆矩阵,且P-1AP=。若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=()
[2007年]曲线y=1/x+ln(1+ex)渐近线的条数为().
(90年)从0,1,2,…,9等10个数字中任意选出3个不同的数字,求下列事件的概率:A1={三个数字中不含0和5};A2={三个数字中不含0或5}.
设函数f(x)在区间[0,2]上具有连续导数,f(0)=f(2)=0,M=,证明:若对任意的x∈(0,2),|f′(x)|≤M,则M=0.
(98年)设F1(χ)与F2(χ)分别为随机变量X1与X2的分布函数.为使F(χ)=a1F1(χ)-bF2(χ)是某一随机变量的分布函数,在下列给定的各组数值中应取【】
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数。试问:当a1,a2,…,an满足条件时,二次型f(x1,x2,
(10年)设y1,y2是一阶线性非齐次微分方程y′+p(χ)y=q(χ)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则【】
(2001年)设函数g(x)=∫0xf(u)du,其中f(x)=则g(x)在区间(0,2)内()
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
随机试题
下列属于神经调质的是
A.寒邪客胃证B.饮食伤胃证C.肝气犯胃证D.湿热中阻证E.瘀血停胃证胃痛暴作,恶寒喜暖,得温痛减,遇寒加重,口淡不渴,或喜热饮,舌淡苔薄白,脉弦紧。证属()
A.疏肝解郁,清胃凉血B.清泻肺热,止咳平喘C.清肝泻火,降逆止呕D.清热解毒,凉血止痢E.清热燥湿,调气和血左金丸的功用为
釉丛的高度为
根据《水利部生产安全事故应急预案(试行)》,水利部直属工程或地方水利工程发生重特大事故,各单位应力争()内快报、()内书面报告水利部。
下列对钢绞线进场的检验要求,正确的有()。
有关结账的正确说法包括()。
根据《专利法》的有关规定,下列情形可以授予专利权的是()。
四川现存年代最久远的石刻佛像是()。
按照AMBA总线规范,基于ARM内核的嵌入式处理器芯片采用系统总线与__________【57】总线两层结构的方式构建片上系统。其中的系统总线主要用于连接__________【58】带宽快速组件。
最新回复
(
0
)