首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x1,x2,x3)=x12+2x22+x32+2ax1x2+2bx1x3+2cx2x3=xTAx,其中AT=A. 求正交矩阵Q,使得XTAX在正交变换X=QY下化为标准二次型.
设f(x1,x2,x3)=x12+2x22+x32+2ax1x2+2bx1x3+2cx2x3=xTAx,其中AT=A. 求正交矩阵Q,使得XTAX在正交变换X=QY下化为标准二次型.
admin
2017-03-02
61
问题
设f(x
1
,x
2
,x
3
)=x
1
2
+2x
2
2
+x
3
2
+2ax
1
x
2
+2bx
1
x
3
+2cx
2
x
3
=x
T
Ax,其中A
T
=A.
求正交矩阵Q,使得X
T
AX在正交变换X=QY下化为标准二次型.
选项
答案
[*] 由AB=O得B的列为AX=O的解,令[*].由Aα
1
=0α
1
,Aα
1
=0α
2
得λ
1
=λ
2
=0为A的特征值,α
1
,α
2
为λ
1
=λ
2
=0对应的线性无关的特征向量,又由λ
1
+λ
2
+λ
3
=tr(A)=6得λ
3
=4.令[*] 为λ
3
=4对应的特征向量,由A
T
=A得[*] λ
3
=4对应的线性无关的特征向量为[*] 令[*] 单位化得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/SHH4777K
0
考研数学三
相关试题推荐
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
若函数y=f(x)有fˊ(x0)=1/2,则当△x→0时,该函数在x=x0点外的微分dy是().
已知线性方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组的逋解,并说明理由.
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解.
微分方程y"-2y’+2y=ex的通解为________.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
根据已知条件,写出下列各函数的表达式:(1)f(x,y)=xy+yx,求f(xy,x+y);(3)f(x,y)=x+2y,求f(xy,f(x,y));(4)f(x+y,y/x)=x2-y2,求f(x,y).
设生产某种产品必须投入两种要素,x1和x2分别为两要素的投入量,Q为产出量;若生产函数为Q=2x1αx2β,其中αβ为正常数,且α+β=1.假设两种要素的价格分别为P1和p2,试问:当产出量为12时,两要素各投入多少可以使得投入总费用最小?
求由方程x2+y3一xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
随机试题
(2014年)弱式有效市场假说认为,市场价格已充分反映出所有过去历史的证券价格信息。下列说法中,属于弱式有效市场所反映出的信息是()。
________在营销技术的发展中,这是企业经营思想的一次革命,其意义可与西方工业革命相提并论。
喉腔侧壁有上下两对矢状位的黏膜皱襞,上方称________,下方称________。
肾综合征出血热少尿期忌用的抗生素是
上题所述病例宜辨证
改革开放以来,我国司法机关始终围绕党的中心工作积极开展司法审判活动,特别是近年来,各级司法机关自觉服务于“保增长、保民生、保稳定”的工作大局,成效显著。关于法治服务于大局,下列哪一说法是不准确的?
清算组在公司清算期间可以行使( )职权。
影响个人劳动力供给意愿的因素有()。
甲委托乙前往丙厂采购男装,乙觉得丙生产的女装市场看好,便自作主张以甲的名义向丙订购。丙未问乙的代理权限,便与之订立了买卖合同。对此,下列说法是正确的是()。
ROM是指()。
最新回复
(
0
)