首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量α1,α2,α3满足α1—2α2+3α3=0,对任意的n维向量β,向量组α1+αβ,α2+bβ,α3线性相关,则参数a,b应满足条件 ( )
设n维向量α1,α2,α3满足α1—2α2+3α3=0,对任意的n维向量β,向量组α1+αβ,α2+bβ,α3线性相关,则参数a,b应满足条件 ( )
admin
2014-04-23
65
问题
设n维向量α
1
,α
2
,α
3
满足α
1
—2α
2
+3α
3
=0,对任意的n维向量β,向量组α
1
+αβ,α
2
+bβ,α
3
线性相关,则参数a,b应满足条件 ( )
选项
A、a=b
B、a=一b
C、a=2b
D、a=一26
答案
C
解析
法一 因α
1
,α
2
,α
3
满足α
1
-2α
2
+3α
3
=0(*),要求向量组α
1
+αβ,α
2
+bβ,α
3
线性相关,其中β是任意向量.利用式(*),
取常数k
1
=1,k
2
=一2,k
3
=3,对向量组α
1
+αβ,α
2
+bβ,α
3
作线性组合,得(α
1
+αβ)一2(α
2
+bβ)+3α
3
=α
1
一2α
2
+3α
3
+(a一2b)β=(a-2b)β.故当a=2b时,对任意的n维向量β均有α
1
+αβ一2(α
2
+bβ)+3α
3
=0.
即α=2b时,α
1
+αβ,α
2
+bβ,α
3
对任意β线性相关.故应选C.
法二 α
1
+αβ,α
2
+bβ,α
3
线性相关
r[α
1
+αβ,α
2
+bβ,α
3
]≤2.对矩阵[α
1
+αβ,α
2
+bβ,α
3
]
作初等列变换(不改变秩)有[α
1
+bβ,α
2
+bβ,α
3
]→[α
1
+bβ,α
2
+bβ.α
1
+αβ一2(α
2
+bβ)+α
3
]→[α
1
+αβ,α
2
+bβ,(α一2b)β]
[α
1
+αβ,α
2
+bβ,0],
故a=2b时,r[α
1
+aβ,α
2
+bβ,α
3
]≤2,α
1
+αβ,α
2
+bβ,α
3
线性相关,应选C.
转载请注明原文地址:https://kaotiyun.com/show/SN54777K
0
考研数学一
相关试题推荐
设y1(x)和y2(x)是微分方程y“+p(x)y+q(x)y=0的两个特解,则由y1(x),y2(x)能构成该方程的通解的充分条件为()
设矩阵A=aaT+bbT,这里a,b为n维列向量,证明:当a,b线性相关时,R(A)≤1.
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g(a)=g(b)=1,f’(x)≠0.证明存在ξ,η∈(a,b),使
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f’(x)>0,如果存在,证明:f(x)>0,x∈(a,b);
曲线的斜渐近线为________________.
写出sinx在点x=x0处的一阶带拉格朗日余项的泰勒展开式;
判别∫1+∞dx的敛散性。
(1)设x>0,y>0,z>0,求函数f(x,y,z)=xyz3在约束条件x2+y2+z2=5R2(R>0为常数)下的最大值;(2)由(1)的结论证明:当a>0,b>0,c>0时,
一半径为R的球沉入水中,球面顶部正好与水面相切,球的密度为1,求将球从水中取出所做的功.
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y与V=X-Y不相关的充分必要条件为()
随机试题
试述长期高血压引起心力衰竭的发病机制。
患者,女,58岁。绝经数年,忽又来潮,量多、色淡,肌热面赤,烦渴欲饮,脉洪大而虚。治疗应选用()
按照规定,()应当将汇总的建设工程文件档案向地方城建档案管理部门移交。
(2008)按现行《无障碍设计规范》的要求。设有观众席和听众席的公共建筑应设轮椅席位,下列叙述哪项有误?
实行持仓限额制度的目的在于()。
关于税法的基本原则,下列表述不正确的是()。
食用油品牌A的产品特征:(1)产品原料主要来自于豆类,原料概念新,产品形象新;(2)产品中维生素含量丰富,并且比市场上现有品牌的维生素含量高;(3)营养价值高,营养成分平衡;(4)产品有一定的保健功能;(5
游客因团内矛盾,或者因为无法满足其个人要求,提出提前退团,要请全陪或领队劝解,希望他继续随团旅游。如劝说无效,可满足其要求,未享受的综合服务费如何退还由地接社决定。()
对生活在化工厂附近地区的居民所作的正常医疗检查发现,这些居民在致命器官上受到的可能导致癌变的伤害的百分比相当高。这可能是由于有毒的化学物质从化工厂流人河床而导致的。以下哪项所提供的信息对决定化工厂对可能出现癌变的当地居民是否应当负责任最有用?
中国共产党同各民主党派和无党派民主人士进行合作和协商的形式有()。
最新回复
(
0
)