首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量α1,α2,α3满足α1—2α2+3α3=0,对任意的n维向量β,向量组α1+αβ,α2+bβ,α3线性相关,则参数a,b应满足条件 ( )
设n维向量α1,α2,α3满足α1—2α2+3α3=0,对任意的n维向量β,向量组α1+αβ,α2+bβ,α3线性相关,则参数a,b应满足条件 ( )
admin
2014-04-23
41
问题
设n维向量α
1
,α
2
,α
3
满足α
1
—2α
2
+3α
3
=0,对任意的n维向量β,向量组α
1
+αβ,α
2
+bβ,α
3
线性相关,则参数a,b应满足条件 ( )
选项
A、a=b
B、a=一b
C、a=2b
D、a=一26
答案
C
解析
法一 因α
1
,α
2
,α
3
满足α
1
-2α
2
+3α
3
=0(*),要求向量组α
1
+αβ,α
2
+bβ,α
3
线性相关,其中β是任意向量.利用式(*),
取常数k
1
=1,k
2
=一2,k
3
=3,对向量组α
1
+αβ,α
2
+bβ,α
3
作线性组合,得(α
1
+αβ)一2(α
2
+bβ)+3α
3
=α
1
一2α
2
+3α
3
+(a一2b)β=(a-2b)β.故当a=2b时,对任意的n维向量β均有α
1
+αβ一2(α
2
+bβ)+3α
3
=0.
即α=2b时,α
1
+αβ,α
2
+bβ,α
3
对任意β线性相关.故应选C.
法二 α
1
+αβ,α
2
+bβ,α
3
线性相关
r[α
1
+αβ,α
2
+bβ,α
3
]≤2.对矩阵[α
1
+αβ,α
2
+bβ,α
3
]
作初等列变换(不改变秩)有[α
1
+bβ,α
2
+bβ,α
3
]→[α
1
+bβ,α
2
+bβ.α
1
+αβ一2(α
2
+bβ)+α
3
]→[α
1
+αβ,α
2
+bβ,(α一2b)β]
[α
1
+αβ,α
2
+bβ,0],
故a=2b时,r[α
1
+aβ,α
2
+bβ,α
3
]≤2,α
1
+αβ,α
2
+bβ,α
3
线性相关,应选C.
转载请注明原文地址:https://kaotiyun.com/show/SN54777K
0
考研数学一
相关试题推荐
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设矩阵A=aaT+bbT,这里a,b为n维列向量,证明:R(A)≤2.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且,f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(arctanξ)f’(ξ)=-1.
设矩阵A=且A不可以相似对角化,则a=______________.
设函数y=y(x)由参数方程确定,求曲线y=y(x)为凹时,x的取值范围。
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题①(Ⅰ)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(Ⅰ)的解;③(Ⅰ)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(Ⅰ)的解.其中正确的是().
已知随机变量X的概率密度为f(x)=,求(1)常数a,b的值;(2)。
设(X,Y)服从G={(x,y)|1>y>x>0}上的均匀分布(图3-6),求:X和Y的边缘密度函数.
求常数项级数的和:
随机试题
《周易·系辞上》里说:“二人同心,其利断金。”这句话给我们的启示是()。
标明净含量为454g的罐头,允许单罐短缺量为()。
肥胖病的病位在
球形电容器的内半径R1=5cm,外半径R2=10cm。若介质的电导率γ=10-10S/m,则球形电容器的漏电导为()。
具有工期较短、资源供应特别集中、现场组织管理复杂、不强调分工协作等特点的施工过程组织方法是()。
关于人类探月,下列说法不正确的是()。
试述反应速度训练常用的方法与手段。
用图表(如直方图、曲线图等)形式表示数据表有很多优点,但这些优点中不包括______。
(68)referstothepartsofthecomputerthatyoucan,seeandtouch.Itisusedforthepurposeof(69).
HowtoapproachListeningTestPartOne•InthispartoftheListeningTestyoulistentoamonologue,e.g.apresentation.•B
最新回复
(
0
)