首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n元二次型 f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn)为正定二次型.
设有n元二次型 f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn)为正定二次型.
admin
2021-02-25
49
问题
设有n元二次型
f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n
+a
n
x
1
)
2
,其中a
i
(i=1,2,…,n)为实数.试问当a
1
,a
2
,…,a
n
满足何种条件时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型.
选项
答案
由题设知,对任意的实数x
1
,x
2
,…,x
n
,有 f(x
1
,x
2
,…,x
n
)≥0, 其中等号成立当且仅当 [*] 该齐次线性方程组仅有零解的充分必要条件是其系数行列式 [*] 所以当1+(-1)
n+1
α
1
α
2
…α
n
≠0时,对任意n个不全为零的实数x
1
,x
2
,…,x
n
,都有 f(x
1
,x
2
,…,x
n
)>0, 即当a
1
a
2
…a
n
≠(-1)
n
时,二次型 f(x
1
,x
2
,…,x
n
)为正定二次型.
解析
本题考查正定二次型的判定方法.将二次型f(x
1
,x
2
,…,x
n
)的正定性问题转化为齐次线性方程组仅有零解的问题进行解决.
转载请注明原文地址:https://kaotiyun.com/show/9K84777K
0
考研数学二
相关试题推荐
设二元函数计算二重积分其中D={(x,y)||x|+|y|≤2}.
当x→0时,1-cosxcos2xcos3x与axn为等价无穷小,求n与a的值.
[*]
(02年)设0<x1<3,(n=1,2…),证明数列{xn}的极限存在,并求此极限.
方程组有解的充要条件是____________.
设f(x,y)连续,且其中D是由y=0,y=x2,x=1所围区域,则f(x,y)等于()
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
一半径为R的球沉入水中,球面顶部正好与水面相切,球的密度为1,求将球从水中取出所做的功.
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:.证明:.
设(2E-C-1B)AT=C-1,其中E是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,且求A.
随机试题
患者进行肾静态显像,以下哪一项是不正确的
女,8岁。食冷饮时左下后牙感到酸痛2周,无自发痛史,检查发现左下第一磨牙颊面深龋,龋蚀范围稍广,腐质软而湿润,易挖除,但敏感。测牙髓活力同正常牙,叩诊(一)。首次就诊时,对该患牙应做的处理为
资产的特征不包括()。
43,36,30,25,18,12,()
女青年甲明知自己的男友乙杀了人,而帮助乙将杀人的匕首藏至自家的衣柜内并帮乙洗干净血衣。甲的行为
设X,Y为两个随机变量,且D(X)=9,Y=2X+3,则X,Y的相关系数为______.
Whatdoesitmeantorelax?Despite【C1】______thousandsoftimesduringthecourseofourlives,【C2】______havedeeplyconsidered
Thedaywasended—quitesuccessfully,sofarassheknew.TheTrusteesandthevisitingcommitteehadmadetheirrounds,andrea
A、Tomorrowmorning.B、OnThursdayafternoon.C、At3pmthisafternoon.D、Twohoursago.CWhattimeisthistrainleaving,John?
A、Findasuitablejob.B、Workinashoppingmall.C、Starthisownbusiness.
最新回复
(
0
)