首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annkf(A)的对角线元素
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annkf(A)的对角线元素
admin
2016-10-21
47
问题
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.
(2)证明上三角矩阵A的方幂A
k
与多项式f(A)也都是上三角矩阵;并且A
k
的对角线元素为a
11
k
,a
22
k
,…,a
nn
k
f(A)的对角线元素为f(a
11
),f(a
22
),…,f(a
nn
).(a
11
,a
22
,…,a
nn
是A的对角线元素.)
选项
答案
(1)设A和B都是n阶上三角矩阵,C=AB,要说明C的对角线下的元素都为0,即i>时,c
ij
=0.c
ij
=A的第i个行向量和B的第j个列向量对应分量乘积之和.由于A和B都是n阶上三角矩阵,A的第i个行向量的前面i-1个分量都是0,B的第j个列向量的后面n-j个分量都是0,而i-1+n-j=n+(i-j-1)≥n,因此c
ij
=0. ii=a
i1
b
1i
+…+a
ii-1
b
i-1i
+a
ii
b
ii
+a
ii+1
+b
i+1i
+…+a
in
b
ni
a
ii
b
ii
(a
i1
=…=a
ii-1
=0,b
i+1i
=…=b
ni
=0). (2)设A是上三角矩阵.由(1),直接可得A
k
是上三角矩阵,并且对角线元素为a
11
k
,a
22
k
,…,a
nn
k
. 设f(A)=a
m
A
m
+a
m-1
A
m-1
+…+a
1
A+a
0
E.a
i
A
i
都是上三角矩阵,作为它们的和,f(A)也是上三角矩阵.f(A)的对角线元素作为它们的对角线元素的和,是f(a
11
),f(a
22
),…,f(a
nn
).
解析
转载请注明原文地址:https://kaotiyun.com/show/SPt4777K
0
考研数学二
相关试题推荐
证明
设f(x)在[a,+∞)上连续,f(a)<0,而limf(x)存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设a1=1,当n≥1时,,证明:数列{an}收敛并求其极限.
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an,为常数,且对一切x有|f(x)|≤|ex-1|.证明:|a1+2a2+…+nan|≤1.
设f(x)=∫0tanxarctant2dt,g(x)=x-sinx,当x→0时,比较这两个无穷小的关系.
证明
若f(x)在[0,a]上连续,a>0,且f"(x)≥0,证明:∫abf(x)dx≥a.
设函数f(x)在[0,1]上具有二阶导数f"(x)≤0,试证明:∫01f(x2)dx≤
随机试题
《行政诉讼法》规定,当事人对裁定不服的上诉期限是()。
控制的基础是()
肾综合征出血热潜伏期一般为
严重高渗性脱水病人首选的补液是
国有金融机构委派到非国有机构从事公务的人员构成犯罪的,按照国家工作人员犯罪处理。( )
证券交易主要的交易规则有( )。
下列说法能够证明中华文化“源远流长,一脉相承”的是()①由甲骨文演变而来的汉字是世界上生命最长的文字②我国各民族文化异彩纷呈共同熔铸了灿烂的中华文化③发源于黄河、长江流域的中华文明历经沧桑至今仍存在④我国古代科技注重实
Manypeoplearenotawarethatitisratherrudeto______.Accordingtothepassagetheoldwouldverymuchliketo______.
一个栈的初始状态为空。现将元素1、2、3、4、5、A、B、C、D、E依次入栈,然后再依次出栈,则元素出栈的顺序是
PASSAGETHREEWhatdoesDenim’shistoryindicateaboutAmerica’sattitudetowardswork?
最新回复
(
0
)