首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0. 证明在[-a,a]上至少存在一点η,使得a3f"(η)=3∫-aaf(x)dx。
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0. 证明在[-a,a]上至少存在一点η,使得a3f"(η)=3∫-aaf(x)dx。
admin
2022-10-08
63
问题
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.
证明在[-a,a]上至少存在一点η,使得a
3
f"(η)=3∫
-a
a
f(x)dx。
选项
答案
∫
-a
a
f(x)dx=∫
-a
a
f’(0)xdx+[*]=[*]∫
-a
a
x
2
f"(ξ)dx 因为f"(x)在[-a,a]上连续,故对任意的x∈[-a,a],有m≤f”(x)≤M,其中M,m分别为f"(x)在[-a,a]上的最大值,最小值,所以有 m∫
0
a
x
2
dx≤∫
-a
a
f(x)dx=[*]∫
-a
a
x
2
f"(ξ)dx≤M∫
0
a
x
2
dx 即m≤[*]≤M 因而由f”(x)的连续性可知,至少存在一点η∈[-a,a],使得 f”(η)=[*]∫
-a
a
f(x)dx,即a
3
f"(η)=3∫
-a
a
f(x)dx
解析
转载请注明原文地址:https://kaotiyun.com/show/1YR4777K
0
考研数学三
相关试题推荐
求
5e
设函数其中f(x)在x=0处二阶可导f"(0)≠0,f′(0)=0,f(0)=0,则x=0是F(x)的()
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,试证α1,α2,α3线性无关.
设函数f(x)具有二阶连续的导数,且f(x)>0,f′(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极大值的一个充分条件是()
一电子仪器由两部分构成,以X和Y分别表示两部分部件的寿命(单位:千小时),已知X和Y的联合分布函数为问X和Y是否独立;
由直线x=1与抛物线y2=2x所包围的图形绕直线旋转一周,求旋转体的表面积.
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得成立.
已知曲线与曲线在点(x0,y0)处有公共切线.求(1)常数a及切点(x0,y0);(2)两曲线与x轴围成的平面图形绕x轴旋转所得旋转体体积Vx.
函数的值域是________。
随机试题
将权力定位于群体的领导作风是()
急性白血病化疗期间多饮水是为了
道氏理论认为开盘价是最重要的价格,并利用开盘价计算平均价格指数。()
《搜神记》是魏晋南北朝志怪小说中最完整、最有代表性的作品集。它汇集了晋朝前民间传说中的神奇怪异故事,很多故事都具有比较积极的意义,对后世影响深远。下列选项中,不是出自《搜神记》的故事是()。
下列选项中加下划线的字的读音全部正确的一组是()。
彼得原理指的是在通常的层级组织中,在一个岗位工作出色的职员往往会被提拔到上一层级的岗位上,直到他被提拔到一个不能胜任的岗位为止,即每一个职员都有可能晋升到不能胜任的层级。根据上述定义,下列体现彼得原理的是:
简述孔子“学而优则仕”的观点。
(05年)设F(x)是连续函数f(x)的一个原函数,表示“M的充分必要条件是N”,则必有
若对音频信号以10kHz采样率、16位量化精度进行数字化,则每分钟的双声道数字化声音信号产生的数据量约为()。
Whatisthemaintopicofthisconversation?
最新回复
(
0
)