首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0. 证明在[-a,a]上至少存在一点η,使得a3f"(η)=3∫-aaf(x)dx。
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0. 证明在[-a,a]上至少存在一点η,使得a3f"(η)=3∫-aaf(x)dx。
admin
2022-10-08
91
问题
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.
证明在[-a,a]上至少存在一点η,使得a
3
f"(η)=3∫
-a
a
f(x)dx。
选项
答案
∫
-a
a
f(x)dx=∫
-a
a
f’(0)xdx+[*]=[*]∫
-a
a
x
2
f"(ξ)dx 因为f"(x)在[-a,a]上连续,故对任意的x∈[-a,a],有m≤f”(x)≤M,其中M,m分别为f"(x)在[-a,a]上的最大值,最小值,所以有 m∫
0
a
x
2
dx≤∫
-a
a
f(x)dx=[*]∫
-a
a
x
2
f"(ξ)dx≤M∫
0
a
x
2
dx 即m≤[*]≤M 因而由f”(x)的连续性可知,至少存在一点η∈[-a,a],使得 f”(η)=[*]∫
-a
a
f(x)dx,即a
3
f"(η)=3∫
-a
a
f(x)dx
解析
转载请注明原文地址:https://kaotiyun.com/show/1YR4777K
0
考研数学三
相关试题推荐
设随机变量(X,Y)的概率密度为求EX,EY,cov(X,Y),ρXY和D(X+V).
设二维随机变量(X,Y)服从正态分布N(μ,μ,σ2,σ2,0),则E(XY2)=___________,E[(X+Y)2]=_______________.
设函数问f(x)在x=1处是否连续?若不连续,修改f(x)在x=1处的定义,使之连续.
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,b3)T是线性方程组的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.即β
已知向量组α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,一1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,6+3,5)T.问:a,b为何值时,β可由α1,α2,α3,α4唯一线性表示;
设常数λ>0,且收敛,则
某产品的成本函数为C(q)=aQ2+bQ+c,需求函数为其中p为价格,Q为需求量(产量),常数a,b,c,d,e>0,且d>b,求:需求量对价格的弹性;
设相互独立的两个随机变量X,Y服从相同的分布,且X的概率分布为又随机变量Z=min{X,Y}.求(X,Z)的概率分布;
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点求L位于第一象限部分的一条切线,使该切线与L及两坐标轴所围图形的面积最小.
设f(u)连续,g(x)=∫01f(tx)dt,且=A(A为常数),求g’(x),并讨论g’(x)在x=0处的连续性.
随机试题
下列不属于胞内第二信使的是:
《光的赞歌》作者_____,是中国现代诗的代表诗人之一,主要作品有《_____我的保姆》。
患者男,53岁,头昏、耳鸣9个月。查体:面部及颈部紫红色,脾大。实验室检查:RBC7.9×1012/L,Hb190g/L,WBC7.7×109/L,PLT391×109/L,血清VitB下降。该患者可能的诊断是
对达不成拆迁补偿安置协议的拆迁纠纷实施行政裁决的可以是()。
(一)[背景资料]广西路桥集团通过竞标成为广西陆河桥梁工程施工任务的总承包方,在和业主签订总承包合同后,广西路桥集团立即组成项目部,通过项目部做的一些前期调研勘察工作,现在决定桥梁基础施工的具体方法如下:(1)基坑开挖采用混凝土加固坑
建设单位因急于投产,擅自使用了未经竣工验收的工程,使用过程中,建设单位发现了一些质量缺陷,遂以质量不符合约定为由将施工单位诉到人民法院。则下列情形中,能够获得人民法院支持的有()。
暂时性差异,是指资产或负债的账面价值与其计税基础之间的差额;未作为资产和负债确认的项目.不会产生暂时性差异。()
腾跃是指腿从器械的上面或下面越过的动作。()
下列情形,应当认定为是入户抢劫的是()(2018年非法学基础课单选第3题)
Itwasasunnyday.Alittleboy’sfatherwassittingonthecouch,drinkingabeerwhilewatching【K1】______basketballmatch.S
最新回复
(
0
)