首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0)。 (Ⅰ)试求曲线L的方程; (Ⅱ)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形面积最小。
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0)。 (Ⅰ)试求曲线L的方程; (Ⅱ)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形面积最小。
admin
2018-04-14
81
问题
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0)。
(Ⅰ)试求曲线L的方程;
(Ⅱ)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形面积最小。
选项
答案
(Ⅰ)设曲线L过点P(x,y)的切线方程为Y-y=y’(X-x),令X=0,则Y=-xy’+y,即它在y轴上的截距为-xy’+y。 根据两点(x,y),(x
0
,y
0
)距离公式d=[*]所以原点到点P(x,y)的距离为[*],由题设P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,所以 [*] 此为一阶齐次方程,按规范方法解之,令y=ux,则dy/dx=u+xdu,代入,方程变为 [*] 由题设曲线经过点(1/2,0),代入得0+[*]=C,则C=1/2,故所求方程为 [*] (Ⅱ)由(Ⅰ)知y=[*]-x
2
,则y’=-2x,点P(x,y)=P(x,[*]-x
2
),所以在点P处的切线方程为 Y-([*]-x
2
)=-2x(X-x), 分别令X=0,Y=0,解得在Y轴,x轴上的截距分别为x
2
+[*] 此切线与两坐标轴围成的三角形面积为 A(x)=1/2([*])=1=64x(4x
2
+1)
2
,x>0。 由于该曲线在第一象限中与两坐标轴所围成的面积为定值,记S
0
,于是题中所要求的面积为 S(x)=A(x)-S
0
=1/64x(4x
2
+1)
2
-S
0
, 求最值点时与S
0
无关,以下按微分学的办法求最值点。 [*] 根据极值存在的第一充分条件:设函数f(x)在x
0
处连续,且在x
0
的某去心δ邻域内可导,若x∈(x
0
-δ,x
0
)时,f’(x)>0,而x∈(x
0
,x
0
+δ)时,f’(x)<0,则f(x)在x
0
处取得极大值,知:x=[*]是S(x)在x>0处的唯一极小值点,即最小值点。 于是所求切线方程为: [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/SRk4777K
0
考研数学二
相关试题推荐
[*]
求函数的最大值和最小值。
设函数f(x)连续,则下列函数中必为偶函数的是
A、高阶无穷小.B、低阶无穷小.C、同阶但非等价无穷小.D、等价无穷小.C
设函数f(x),g(x)在上连续,且g(x)>0,利用闭区间上连续函数性质,证明存在一点ξ∈(a,b),使
若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
设D是位于曲线下方、x轴上方的无界区域.当a为何值时,y(a)最小?并求此最小值.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.求a,b的值.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数n的值;
没ρ=ρ(x)是抛物线上任一点M(x,y)(x≥1)的曲率半径,s=s(x)是该抛物线上介于点A(1,1)与M之间的弧长,计算的值.(在直角坐标系下曲率公式为
随机试题
ADSL上行速率在()。
下列检查项目对ARDS的诊断和病情判断有重要意义的是
下面()建筑不是一级火灾自动报警系统保护对象。
证券交易所决定终止股票上市交易的情形不包括()。
《未成年人保护法》规定,根据未成年人的年龄和智力发展状况,父母或其他监护人在作出与未成年人权益有关的决定时()
邓小平关于社会主义本质的科学概括有哪些最显著的特点?
要进行社情民意调查,你是调查组里的唯一一名派出所民警,请谈谈你的工作思路。
Videogamesgetabadpress.Manyareunquestionablyviolentand,ashasbeenthewaywithnewmediafromnovelstocomicbooks
WhichofthefollowingsentencesisINCORRECT?
A、Theunemploymentrateishigh.B、Thehousemarketbreaksdown.C、Thefrustratedpoliticalsituation.D、Pricesofgoodsrisesh
最新回复
(
0
)