首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0)。 (Ⅰ)试求曲线L的方程; (Ⅱ)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形面积最小。
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0)。 (Ⅰ)试求曲线L的方程; (Ⅱ)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形面积最小。
admin
2018-04-14
65
问题
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0)。
(Ⅰ)试求曲线L的方程;
(Ⅱ)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形面积最小。
选项
答案
(Ⅰ)设曲线L过点P(x,y)的切线方程为Y-y=y’(X-x),令X=0,则Y=-xy’+y,即它在y轴上的截距为-xy’+y。 根据两点(x,y),(x
0
,y
0
)距离公式d=[*]所以原点到点P(x,y)的距离为[*],由题设P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,所以 [*] 此为一阶齐次方程,按规范方法解之,令y=ux,则dy/dx=u+xdu,代入,方程变为 [*] 由题设曲线经过点(1/2,0),代入得0+[*]=C,则C=1/2,故所求方程为 [*] (Ⅱ)由(Ⅰ)知y=[*]-x
2
,则y’=-2x,点P(x,y)=P(x,[*]-x
2
),所以在点P处的切线方程为 Y-([*]-x
2
)=-2x(X-x), 分别令X=0,Y=0,解得在Y轴,x轴上的截距分别为x
2
+[*] 此切线与两坐标轴围成的三角形面积为 A(x)=1/2([*])=1=64x(4x
2
+1)
2
,x>0。 由于该曲线在第一象限中与两坐标轴所围成的面积为定值,记S
0
,于是题中所要求的面积为 S(x)=A(x)-S
0
=1/64x(4x
2
+1)
2
-S
0
, 求最值点时与S
0
无关,以下按微分学的办法求最值点。 [*] 根据极值存在的第一充分条件:设函数f(x)在x
0
处连续,且在x
0
的某去心δ邻域内可导,若x∈(x
0
-δ,x
0
)时,f’(x)>0,而x∈(x
0
,x
0
+δ)时,f’(x)<0,则f(x)在x
0
处取得极大值,知:x=[*]是S(x)在x>0处的唯一极小值点,即最小值点。 于是所求切线方程为: [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/SRk4777K
0
考研数学二
相关试题推荐
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=(x)在点(6,f(6))处的切线方程.
求函数的最大值和最小值。
设函数f(x),g(x)在上连续,且g(x)>0,利用闭区间上连续函数性质,证明存在一点ξ∈(a,b),使
若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
设f(x)是连续函数,F(x)是f(x)的原函数,则
设,(u,v)是二元可微函数,。
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数n的值;
y=2x的麦克劳林公式中xn项的系数是________.
(2003年)y=2χ的麦克劳林公式中χn项的系数是_______.
随机试题
被人称为“七绝圣手”的诗人是
关于光学密度的叙述,错误的是
电镜下观察生物膜(单位膜)呈现的结构是()。
除以下哪种疾患外。尿频时将每次伴尿量减少
根据地形和水流条件,涵洞的洞底纵坡应为12%,此涵洞的基础应()。【2014年真题】
起重机滑接线安装的一般工序中,滑接线连接架设前一工序是()。
合同风险的规避措施有()。
下列关于信息技术与小学教学整合理解正确的是()。
PassageThreeWhichuniversityisthefirstonethatproposestochargelessthan£9,000forallofitscourses?
Overthepastdecade,theenvironmentalmovementhasexplodedontothemindofmainstreamconsumers,afactnotlostonmarketer
最新回复
(
0
)