首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0. (1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式; (2)证明在[-a,a]上至少存在一点η,使 a3f"(η)=3∫-aaf(x)dx.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0. (1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式; (2)证明在[-a,a]上至少存在一点η,使 a3f"(η)=3∫-aaf(x)dx.
admin
2014-07-22
69
问题
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.
(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
(2)证明在[-a,a]上至少存在一点η,使
a
3
f"(η)=3∫
-a
a
f(x)dx.
选项
答案
(1)对任意x∈[-a,a], [*] 其中ξ在0与x之间. (2)[*] 因为f"(x)在[-a,a]上连续,故对任意的x∈[-a,a],有m≤f"(x)≤M,其中M,m分别为f"(x)在[-a,a]上的最大、最小值,于是有 [*] 即[*] 因此,由f"(x)在[-a,a]上的连续性知,至少存在一点η∈[-a,a],使 [*] 即a
3
f"(η)=3∫
-a
a
f(x)dx.
解析
[分析] (1)直接套公式即可,f(x)的带拉格朗日余项的”阶麦克劳林公式为:
(2)的证明显然要用到(1)的结果,由于f(x)在区间[-a,a](a>0)上具有二阶连续导数,因此f"(x)一定存在最大和最小值,若对
进行估值后,发现介于f"(x)的最大值和最小值之间,则用介值定理即可完成证明.
[评注] 本题证明过程中得到的ξ与x有关,因此在(2)的证明过程中,干万不要误以为是常数,而由积分
直接得
于是推出a
3
f"(ξ)=3∫
-a
a
f(x)dx.
这样表面上似乎证明了结论,而实际上是错误的.有时为了明确起见,可将ξ记为ξ(x).
转载请注明原文地址:https://kaotiyun.com/show/FR34777K
0
考研数学二
相关试题推荐
过原点(0,0)向曲线Γ:作切线L,记切点为(x0,y0),由切线L、曲线Γ以及x轴围成的平面图形为D.试求曲线Γ的弧微分;
已知函数y=f(x)在(一∞,+∞)上具有二阶连续的导数,且其一阶导函数f′(x)的图形如图3-1所示,则曲线y=f(x)的上凸(或下凹)区间为__________.
已知函数y=f(x)在(一∞,+∞)上具有二阶连续的导数,且其一阶导函数f′(x)的图形如图3-1所示,则f(x)的递增区间为_______.
若则f(x)=().
则k=().
设随机变量X的分布函数为F(x)=0.2F1(x)+0.8F1(2x),其中F1(y)是服从参数为1的指数分布的随机变量的分布函数,则D(X)为()。
下列反常积分收敛的是()
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3,经正交变换x=Py化成f=yx22+2y3x3,P是3阶正交矩阵.试求常数a、β.
已知三元二次型f(x1,x2,x3)=xTAx其矩阵A各行元素之和均为0,且满足AB+B=0,其中若A+kE正定,求后的取值.
随机试题
CM模式即建设工程管理模式,是近年来在国外广泛流行的一种管理模式。这种模式对过去那种设计图纸全部完成之后才进行招标的传统模式做了改进,采取阶段性发包方式。其特点有()。
Fillingincompanyapplicationformscanbecomeaboringandrepetitivetask,yetanycarelessnessonanapplicant’spartcand
上消化道一次出血少于多少不会出现全身症状
根据《证券公司全面风险管理规范》的规定,下列关于证券公司应当将子公司的风险管理纳入统一体系的说法,正确的有()。Ⅰ.证券公司对子公司风险管理工作实行垂直管理Ⅱ.证券公司子公司应当任命一名高级管理人员负责公司的全面风险管理工作Ⅲ.子
甘肃,取甘州(张掖)、肃州()二地的首字而成。
班会
阅读以下关于某嵌入式系统BIT的说明,回答问题1至问题3,将答案填入答题纸的对应栏内。【说明】某公司负责研制一个嵌入式计算机系统,如图4-1所示。该系统以PowerPC处理器为核心,通过AD进行实时数据采集,并将采集来的数据进行预处理后,通过
_______isnotprintedveryclearlyontheticket.
WangLiisinayellowcoat.WangDongisWangLi’sfriend.
PrinciplesinJapaneseOrganizationsDuringthe1970sand1980s,AmericanmanagersinvestedmuchtimeandmoneystudyingJap
最新回复
(
0
)