首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0. (1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式; (2)证明在[-a,a]上至少存在一点η,使 a3f"(η)=3∫-aaf(x)dx.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0. (1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式; (2)证明在[-a,a]上至少存在一点η,使 a3f"(η)=3∫-aaf(x)dx.
admin
2014-07-22
106
问题
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.
(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
(2)证明在[-a,a]上至少存在一点η,使
a
3
f"(η)=3∫
-a
a
f(x)dx.
选项
答案
(1)对任意x∈[-a,a], [*] 其中ξ在0与x之间. (2)[*] 因为f"(x)在[-a,a]上连续,故对任意的x∈[-a,a],有m≤f"(x)≤M,其中M,m分别为f"(x)在[-a,a]上的最大、最小值,于是有 [*] 即[*] 因此,由f"(x)在[-a,a]上的连续性知,至少存在一点η∈[-a,a],使 [*] 即a
3
f"(η)=3∫
-a
a
f(x)dx.
解析
[分析] (1)直接套公式即可,f(x)的带拉格朗日余项的”阶麦克劳林公式为:
(2)的证明显然要用到(1)的结果,由于f(x)在区间[-a,a](a>0)上具有二阶连续导数,因此f"(x)一定存在最大和最小值,若对
进行估值后,发现介于f"(x)的最大值和最小值之间,则用介值定理即可完成证明.
[评注] 本题证明过程中得到的ξ与x有关,因此在(2)的证明过程中,干万不要误以为是常数,而由积分
直接得
于是推出a
3
f"(ξ)=3∫
-a
a
f(x)dx.
这样表面上似乎证明了结论,而实际上是错误的.有时为了明确起见,可将ξ记为ξ(x).
转载请注明原文地址:https://kaotiyun.com/show/FR34777K
0
考研数学二
相关试题推荐
已知函数y=f(x)在(一∞,+∞)上具有二阶连续的导数,且其一阶导函数f′(x)的图形如图3-1所示,则函数f(x)的驻点是___________.
设f(x)在[0,1]上连续,在(0,1)内可导,且,当x∈(0,1)时,f′(x)>0,试讨论f(0)以及f(1)之间的大小关系,并说明理由.
若f(x)=e2x+x2,则f′(lnx)=___________.
y=f(x)=(2x+1)2,x≥0,则y=f(z)的反函数为____________.
证明当x>0时,不等式成立.
曲线的水平渐近线为__________.
设总体X~U[θ,2θ],其中θ>0是未知参数,X1,X2,Xn是来自总体X的一个简单随机样本,为样本均值。(1)求参数θ的矩估计量,计算E并判断是否依概率收敛于θ,说明理由;(2)求参数θ的最大似然估计量,并计算E。
由题设,设方程组的系数矩阵为A,则[*]
已知三元二次型f(x1,x2,x3)=xTAx其矩阵A各行元素之和均为0,且满足AB+B=0,其中若A+kE正定,求后的取值.
随机试题
简述防止加热炉炉管结焦的措施。
标志着国际私法统一化开始的事件是()
加强党的建设,必须摆到首位的是()
患者女性,58岁。右乳腺癌术后3年,口服三苯氧胺治疗中。无肝炎史,血糖正常。复查超声应重点检查下列哪几项
患者,女,70岁。住院心电图监测时发生室性心动过速,心率为172次/分,血压为120/80mmHg,意识清楚,双肺呼吸音清晰,无湿啰音。首选的治疗药物是
()是一项着眼于组织、管理与控制的结构化项目管理方法,也是一套科学完整的项目管理知识体系,该方法最初由英国CCTA于1989年建立。
在短期内,通货膨胀率与产出之间的关系可以表述为()。[2006年真题]
对于个人汽车贷款,贷款受理人应要求借款申请人以书面形式提出个人汽车贷款借款申请,申请材料中不一定要包括的是()。
中央电视台开播《百家讲坛》以来,一些艰涩高深的传统经典经过现代诠释变得通俗易懂,富有时代气息,为大众所接受。这说明()。
(2016·安徽)学习成绩好并不意味着道德修养水平高。这要求教师在教学的过程中坚持()
最新回复
(
0
)