首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明:ヨx0∈(2π,5π/2)使得∥F"(x0)=0.
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明:ヨx0∈(2π,5π/2)使得∥F"(x0)=0.
admin
2018-06-15
58
问题
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)
2
f(x),证明:ヨx
0
∈(2π,5π/2)使得∥F"(x
0
)=0.
选项
答案
显然F(0)=F(π/2)=0,于是由罗尔定理知,ヨx
1
∈(0,π/2),使得F’(x
1
)=0.又 F’(x)=2(sinx-1)cosxf(x)+(sinx-1)
2
f’(x), [*] 对F’(x)应用罗尔定理,由于F(x)二阶可导,则存在x
0
*
∈(x
1
,π/2)[*](0,π/2),使得F"(x
0
*
)=0. 注意到F(x)以2π为周期,F’(x)与F"(x)均为以2π为周期的周期函数,于是ヨx
0
=2π+x
0
*
,即x
0
∈(2π,5/2π),使得 F"(x
0
)=F"(x
0
*
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/SXg4777K
0
考研数学一
相关试题推荐
有两名选手比赛射击,轮流对同一个目标进行射击,甲命中目标的概率为α,乙命中目标的概率为β甲先射,谁先命中谁得胜.问甲、乙两人获胜的概率各为多少?
设A是主对角元为0的四阶实对称阵,E是四阶单位阵,B=,且E+AB是不可逆的对称阵,求A.
求矢量A(x,y,z)=i+zj+k穿过曲面∑的通量,其中∑为曲线绕z轴旋转一周所形成旋转曲面的外侧在1≤z≤2间部分.
设某曲线L的线密度μ=x2+y2+z2,其方程为x=e’cost,y=e’sint,z=,-∞<t≤0.求曲线L对位于原点处质量为m的质点的引力(k为引力常数).
设函数f(x)=,证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bx2+o(x2),并求常数A,B.
设f(x,y)为具有二阶连续偏导数的二次齐次函数,即对任何x,y,t下式成立f(tx,ty)=t2f(x,y).证明:
设函数f(x,y)及它的二阶偏导数在全平面连续,且f(0,0)=0,≤2|x-y|.求证:|f(5,4)|≤1.
设半径为R的球面∑的球心在定球面x2+y2+z2=a2(a>0)上,问当R取何值时,球面∑在定球面内部的哪部分面积最大?
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是()
设随机变量X,Y相互独立,且X~,又设向量组α1,α2,α3线性无关,求α1+α2,α2+Xα3,Yα1线性相关的概率.
随机试题
A、stomachB、headacheC、characterD、churchDch在church中的发音是[t∫],在其他三项中的发音是[k]。stomach胃;headache头疼;charater特征;church教堂。
脑血栓形成患者服用阿司匹林,目的是
乳剂制备时,先将乳化剂加入到水中再将油加入研磨成初乳,再加水稀释的方法为乳剂制备时,使植物油与含碱的水相发生皂化反应,生成新皂乳化剂随即进行乳化的方法为
善于调经止血、柔肝止痛的白芍炮制品是()。
工程项目的招标工作应在()阶段完成。
混凝土及抹灰面涂饰方法一般采用()等方法。
在应收管理模块初始化中,需要录入每笔()的往来业务单据。
(2015.河南)在对待师生关系方面,新课程中教师的教学行为强调()(常考)
阅读下面材料,选好角度,自拟题目,联系实际,写篇不少于600字的文章,除诗歌以外,文体不限。传说,北山愚公家门前有两座大山挡住了路,他下决心要把山平掉,河曲智叟笑他太傻,认为不可能。愚公回答:“我死了有儿子,儿子死了有孙子,子子孙孙是没有穷尽的。这两座山不
法律规定的公安机关在公益方面应当履行的责任义务包括救护、扶助、调解等方面。()
最新回复
(
0
)