首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明:ヨx0∈(2π,5π/2)使得∥F"(x0)=0.
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明:ヨx0∈(2π,5π/2)使得∥F"(x0)=0.
admin
2018-06-15
36
问题
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)
2
f(x),证明:ヨx
0
∈(2π,5π/2)使得∥F"(x
0
)=0.
选项
答案
显然F(0)=F(π/2)=0,于是由罗尔定理知,ヨx
1
∈(0,π/2),使得F’(x
1
)=0.又 F’(x)=2(sinx-1)cosxf(x)+(sinx-1)
2
f’(x), [*] 对F’(x)应用罗尔定理,由于F(x)二阶可导,则存在x
0
*
∈(x
1
,π/2)[*](0,π/2),使得F"(x
0
*
)=0. 注意到F(x)以2π为周期,F’(x)与F"(x)均为以2π为周期的周期函数,于是ヨx
0
=2π+x
0
*
,即x
0
∈(2π,5/2π),使得 F"(x
0
)=F"(x
0
*
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/SXg4777K
0
考研数学一
相关试题推荐
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(Ф(2)=0.977).
某批矿砂的5个样品中镍含量经测定为X(%):3.25,3.27,3.24,3.26,3.24,设测定值服从正态分布,问能否认为这批矿砂的镍含量为3.25(a=0.01)?
记平面区域D={(x,y)|x|+|y|≤1),计算如下二重积分:,其中f(t)为定义在(-∞,+∞)上的连续正值函数,常数a>0,b>0;
设Ω为曲线z=1-x2-y2,z=0所围的立体,如果将三重积分f(x,y,z)dv化为先对z再对y最后对x积分,则I=_______
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0,则E∈(a,b),使
设B是秩为2的5×4矩阵,α1=[1,1,2,3]T,α2=[-1,1,4,-1]T,α3=[5,-1,-8,9]T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
已知三元二次型XTAX经正交变换化为,又知矩阵B满足矩阵方程其中α=[1,1,-1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
设f(u,v)为二元可微函数,z=f(xy,yx),则=___________·
计算下列各题:设y=,其中a>b>0,求y’.
随机试题
这孩子是她的秘密,她将秘密留在这树林掩映的建筑里。
铝是一种很容易发生化学反应的物质,即使只放置在空气中,也会与氧发生反应,在表面形成氧化铝层。这种与氧发生反应、被其他物质夺走电子的化学反应称为“氧化”;与此相反.从其他物质夺取电子的化学反应则称为“还原”。普通金属与氧发生反应后会生锈(氧化物等的化合物)而
女性,32岁,半年前在工作中发生过一次失误受到领导点名批评,渐出现敏感多疑,认为公司老板是黑社会的,要整自己、害自己,认为自己的想法周围人能知道,恐惧害怕,不敢上班,找公安局报案,伴失眠等。针对该病,首选治疗药物为()
肩关节脱位最常见的类型是
关于对城市整体空间的组织理论,错误的是()
在我国法律体系中,《建筑法》属于()部门。
有机食品是国际上对无污染天然食品的简称,其价格往往高于一般食品,原因是()。
广告,是指为了商业目的,由商品经营者或服务提供者承担费用,通过一定媒介或一定形式,如通过报刊、电视、路牌、橱窗等,直接或间接地对自己推销的商品或者所提供的服务所进行的公开的宣传活动。下列属于广告活动的是()。
正义者同盟
为保证数据的实体完整性,应该创建的索引是
最新回复
(
0
)