首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
admin
2016-10-23
63
问题
设A为n阶矩阵,α
1
,α
2
,α
3
为n维列向量,其中α
1
≠0,且Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
,证明:α
1
,α
2
,α
3
线性无关.
选项
答案
由Aα
1
=α
1
得(A一E)α
1
=0; 由Aα
2
=α
1
+α
2
得(A一E)α
2
=α
1
;由Aα
3
=α
2
+α
3
得(A一E)α
3
=α
2
, 令k
1
α
1
+k
2
α
解析
转载请注明原文地址:https://kaotiyun.com/show/SZT4777K
0
考研数学三
相关试题推荐
[*]
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
设β,α1,α2线性相关,β,α2,α3线性无关,则().
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
证明[*]
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
求下列初值问题的解:(1)y〞-3yˊ+2y-1,y|x=0=2,yˊ|x=0=2;(2)y〞+y+sin2x=0,y|x=π=1,yˊ|x=π=1;(3)y〞-yˊ=2(1-x),y|x=0=1,yˊ|x=0=1;(4)y〞+y=ex+cosx,
设一物体占空间闭区域Ω=[0,1]×[0,1]×[0,1],其密度函数为μ(x,y,z)=x+y+z,求该物体的质量.
设函数y=f(x)具有二阶导数,且f’(x)>0,f(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设非齐次线性微分方程yˊ+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是().。
随机试题
(2009年原制度)甲上市公司20×8年1月1日发行在外的普通股为30000万股。20×8年度甲公司与计算每股收益相关的事项如下:(1)5月15日,以年初发行在外普通股股数为基数每10股送4股红股,以资本公积每10股转增3股,除权日为6月1日。(2)7
树木:砍伐()
20世纪初期,为挽救封建专制统治,清政府实行了
诊断为肠梗阻后,极为重要的是必须明确
男性,34岁。患大叶肺炎入院,使用青霉素治疗,治疗期间出现了明显的青霉素过敏反应,患者出现荨麻疹,喉头水肿,甚至过敏性休克。经全力抢救患者转危为安。青霉素过敏主要属于
个体配戴吉祥物属r
最可能的年龄是小儿腕部骨化中心共有
()代表了城市规划行政体系中的中央集权型制。
某35kV电气装置工程项目,某机电安装公司通过招投标中标。施工项目经理部为了保证施工项目按期完成,使资源配置尽量达到合理和最大限度地降低成本,就组织人员进行施工进度计划的编制,编制采用的方法是横道图施工进度计划。在施工过程中的部分施工工序和要点如下:
会计职业道德规范都是成文的规定,具有一定的约束力。()
最新回复
(
0
)