首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知下列非齐次线性方程组(Ⅰ),(Ⅱ): 当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.
已知下列非齐次线性方程组(Ⅰ),(Ⅱ): 当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.
admin
2021-02-25
46
问题
已知下列非齐次线性方程组(Ⅰ),(Ⅱ):
当方程组(Ⅱ)中的参数m,n,t为何值时,方程组(Ⅰ)与(Ⅱ)同解.
选项
答案
将(Ⅰ)的通解代入(Ⅱ)的第一个方程,得 (-2+k)+m(-4+k)-(-5+2k)-k=-5, 比较上式两端关于k的同次幂的系数,解得m=2. 再将(Ⅰ)的通解代入(Ⅱ)的第二个方程,得 n(-4+k)-(-5+2k)-2k=-11, 比较上式两端关于k的同次幂的系数,解得n=4. 再将(Ⅰ)的通解代入(Ⅱ)的第三个方程,得 (-5+2k)-2k=-t+1. 解得t=6. 因此,当m=2,n=4,t=6时,方程组(Ⅰ)的全部解都是方程组(Ⅱ)的解.这时,方程组(Ⅱ)化为 [*] 设方程组(Ⅱ)的系数矩阵为A
2
,增广矩阵为B
2
,对B
2
作初等行变换,得 [*] 解得方程组(Ⅱ)的通解为 [*] 可见,当m=2,n=4,t=6时,方程组(Ⅰ)与方程组(Ⅱ)的解完全相同,即方程组(Ⅰ)与方程组(Ⅱ)同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/Sa84777K
0
考研数学二
相关试题推荐
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
设矩阵A=的特征值之和为1,特征值之积为-12(b>0).(1)求a、b的值;(2)求一个可逆矩阵P,使P-1AP=A为对角矩阵.
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设A=,若存在秩大于1的三阶矩阵B使得BA=0,则An=_______.
设A,B是n阶可逆矩阵,且A~B,则①A-1~B-1;②AT~BT;③A*~B*;④AB~BA.其中正确的个数是()
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解
设y″的系数为1的某二阶常系数非齐次线性微分方程的两个特解为y1*=(1-x+x2)ex与y1*=x2ex则该微分方程为______.
随机试题
影响胰腺炎预后的因素,不包括
男,19岁。头晕、乏力3个月,Hb58g/L,WBC3.8x109/L,PLT50x109/L,胸骨穿刺有核细胞增生活跃,各系细胞形态正常,需再做哪项检查
下列属于项目经理商业认知方面的能力的是()
钢筋与混凝土能够共同工作主要依靠它们之间的()。
在会计核算原则中,要求合理核算可能发生的费用和损失的原则是指()。
甲于2013年8月18日签发支票向乙支付货款,由于货物数量未最终核定,支票金额未填写。乙将支票背书给丙,嘱咐丙补填金额不可超过15万元。丙将金额记载为15万元,并背书给丁。丁向银行提示付款。银行以甲的账户余额不足支付为由退票。丁以甲、乙、丙为被告向法院起诉
无担保流动资金贷款是指银行向个人发放的、无须担保的、用于满足生产经营流动资金需求的信用贷款。()
导游常用的目光应是()。
客户机/服务器数据库系统又可分为集中式的服务器结构和______的服务器结构。
A、Screamandcry.B、Hideunderbeds.C、Fleethehouse.D、Seektheirparents’help.B短文提到家里发生火灾时,儿童经常会感到恐慌,常常会躲在衣柜或床底,B与此相符,故为正确答
最新回复
(
0
)