首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n. ① 求二次型xTAx的规范形. ② 证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n. ① 求二次型xTAx的规范形. ② 证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
admin
2019-07-28
41
问题
设A为n阶实对称矩阵,满足A
2
=E,并且r(A+E)=k<n.
① 求二次型x
T
Ax的规范形.
② 证明B=E+A+A
2
+A
3
+A
4
是正定矩阵,并求|B|.
选项
答案
① 由于A
2
=E,A的特征值九应满足λ
2
=1,即只能是1和一1.于是A+E的特征值只能是2和0.A+E也为实对称矩阵,它相似于对角矩阵A,A的秩等于r(A+E)=k.于是A+E的特征值是2(k重)和0(n一k重),从而A的特征值是1(k重)和一1(n—k重).A的正,负关系惯性指数分别为k和n一k,x
T
Ax的规范形为y
1
2
+y
2
2
+…+y
k
2
一y
k+1
2
…一y
n
2
.② B是实对称矩阵.由A
2
=E,有B=3E+2A,B的特征值为5(k重)和1(n一k重)都是正数.因此B是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/CTN4777K
0
考研数学二
相关试题推荐
微分方程2y〞=3y2满足初始条件y(-2)=1,y′(-2)=1的特解为_______.
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βm;(Ⅲ):γ1,γ2,…,γm,若向量组(Ⅲ)线性相关,则().
设f(x)∈C[0,1],f(x)>0.证明积分不等式:ln∫01f(x)dx≥∫01lnf(x)dx.
设k为常数,方程kx-+1=0在(0,+∞)内恰有一根,求k的取值范围.
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b.证明:≥(b-a)2.
计算二重积分I=∫01dx
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得
在x轴上有一线密度为常数μ,长度为l的细杆,在杆的延长线上离杆右端为a处有一质量为m的质点P,求证:质点与杆间的引力为(M为杆的质量).
设ξ0=(1,-1,1,1)T是线性方程组的一个解向量,试求:方程组(*)的全部解;
设向量α=(1,0,-1)T,矩阵A=ααT,a为常数,n为正整数,则行列式|aE-An|=_______.
随机试题
有以下程序#include<stdio.h>main(){charc[2][5]={"6938","8254"},*p[2];inti,j,s=0;f
何谓肝脏假小叶?其形态结构如何?
依据我国《担保法》规定,下列财产不可以抵押的是()。
属于民族文化遗产的有()。
《建设工程施工合同》规定的设计变更范畴不包括( )。
引起个别投资中心的投资利润率提高的投资,一定会使整个企业的剩余收益增加。()
经济活动的参与者是分散的,各自独立,信息不全,结果必然造成经济波动和资源浪费。这反映出市场调节的哪一项缺陷?()
图16-4标出了某地区的运输网:各节点之间的运输能力如表16-10所示(单位:万吨/小时):从节点①到节点⑥的最大运输能力(流量)可以达到(65)万吨/小时。
Americanseat_______________(两倍多的蛋白质)theyactuallyneedeveryday.
A、Aprojectaboutanactress.B、Aprojectaboutamoviedirector.C、Aprojectaboutamovie.D、AprojectaboutEurope.AWhatar
最新回复
(
0
)