首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Ax=β的通解为x=k1(1,0,0,1)T+k2(2,1,0,1)T+(1,0,1,2)T,其中k1,k2为任意常数.A=(α1,α2,α3,α4),则( )
设非齐次线性方程组Ax=β的通解为x=k1(1,0,0,1)T+k2(2,1,0,1)T+(1,0,1,2)T,其中k1,k2为任意常数.A=(α1,α2,α3,α4),则( )
admin
2020-04-30
25
问题
设非齐次线性方程组Ax=β的通解为x=k
1
(1,0,0,1)
T
+k
2
(2,1,0,1)
T
+(1,0,1,2)
T
,其中k
1
,k
2
为任意常数.A=(α
1
,α
2
,α
3
,α
4
),则( )
选项
A、β必可由α
1
,α
2
线性表示.
B、β必可由α
1
,α
2
,α
4
线性表示.
C、β必可由α
3
,α
4
线性表示.
D、β必可由α
4
,α
1
线性表示.
答案
C
解析
本题考查非齐次线性方程组通解的结构和常数项向量与系数矩阵的列向量的关系.
由题意知ξ
1
=(1,0,0,1)
T
,ξ
2
=(2,1,0,1)
T
为齐次线性方程组Ax=0的解,即Aξ
1
=0,Aξ
2
=0,可得α
1
+α
4
=0,2α
1
+α
2
+α
4
=0,则α
1
=-α
4
,α
2
=α
4
,又η=(1,0,1,2)
T
为Ax=β的解,即有
β=α
1
+α
3
+2α
4
=α
3
+α
4
.
故知β可由α
3
,α
4
线性表示,故应选C.
转载请注明原文地址:https://kaotiyun.com/show/Sbv4777K
0
考研数学一
相关试题推荐
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且秩(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是
已知方程组的通解是(1,2,一1,0)T+k(一1,2,一1,1)T,则a=______.
微分方程y’=1+x+y2+xy2的通解为_________.
设三阶矩阵A的特征值是0,1,-1,则下列选项中不正确的是()
曲线y=x(x一1)(2一x)与x轴所围成的图形面积可表示为().
将一枚匀称的硬币独立地掷三次,记事件A=“正、反面都出现”;B=“正面最多出现一次”;C=“反面最多出现一次”,则下列结论中不正确的是()
设L1:x2+y2=1,L2:x2+y2=2,L3:x2+2y2=2,L4:2x2+y2=2为四条逆时针力向的平面曲线,记则max{I1,I2,I3,I4}=()
设x→0时,(1+sinx)x一1是比xtanxn低阶的无穷小,而xtanxn是比(一1)ln(1+x2)低阶的无穷小,则正整数n等于()
在球面x2+y2+z2=1上取以A(1,0,0),B(0,1,0),C(0,0,1)为顶点的球面三角形∑,如果该球面三角形的面密度为ρ=x2+z2,则此球面三角形的质量m=________________.
随机试题
HowtoReduceYourWeight?Youfeelsad;"Iskipmybreakfastandsupper.Iruneverymorningandevening.WhatelsecanI
简述人口因素对社会发展的影响。
对疑有鼻咽癌的人应注意仔细检查的淋巴结是
根据《民法通则》,关于代理的说法,正确的是()。
家美公司是我国某市一家外商独资介业,2011年度发生了以下事项:(1)该公司平时采用英镑记账,期末使用人民币编制财务会计报表。(2)由于公司董事长兼总经理杰克居住在英国,为提高信息披露效率,经公司董事会研究决定,公司对外报送的财务会计报
建筑安装工程定额直接费中的人工费是指( )。
物价稳定这一宏观经济发展目标的衡量指标是()。
甲公司是一家建筑工程公司,其所发生的相关业务资料如下。(1)2x18年1月1日,甲公司与乙公司签订一项总金额为880万元的固定造价合同,该合同不可撤销。甲公司负责工程的施工及全面管理,乙公司按照第三方工程监理公司确认的工程完工量,每年与甲公司结算一次。该
2013年7月16日,在军方的支持下,埃及政府宣布重启国家过渡进程。其后,美国和欧盟表示将重新审视对埃关系,海湾合作委员会成员国则力挺埃及军方,而伊朗和土耳其对埃及过渡政府持反对态度。国际社会产生不同反应的根本原因是()。
Completethesentencesbelow.ChooseNOMORETHANTHREEWORDSfromthepassageforeachanswer.Writeyouranswersinboxes25a
最新回复
(
0
)