首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
就a的不同取值情况,确定方程lnx=xa(a>0)实根的个数.
就a的不同取值情况,确定方程lnx=xa(a>0)实根的个数.
admin
2016-10-20
28
问题
就a的不同取值情况,确定方程lnx=x
a
(a>0)实根的个数.
选项
答案
令f(x)=lnx-x
a
,即讨论f(x)在(0,+∞)有几个零点.用单调性分析方法.求f(x)的单调区间. [*] 则当0<x≤x
0
时,f(x)单调上升;当x≥x
0
时,f(x)单调下降;当x=
0
时,f(x)取最大值f(x
0
)=[*]从而f(x)在(0,+∞)有几个零点,取决于y=f(x)属于图2.13中的哪种情形. [*] 方程f(x)=0的实根个数有下列三种情形: (Ⅰ)当[*]时,恒有f(x)<0 ([*]∈(0,+∞)),故f(x)=0没有根. (Ⅱ)当f(x
0
)=[*]时,由于x∈(0,+∞),当x≠x
0
=e
e
时,f(x)<0,故f(x)=0只有一个根,即x=x
0
=e
e
. (Ⅲ)当f(x
0
)=[*] 故方程f(x)=0在(0,x
0
),(x
0
,+∞)各只有一个根.因此f(x)=0在(0,+∞)恰有两个根.
解析
转载请注明原文地址:https://kaotiyun.com/show/SiT4777K
0
考研数学三
相关试题推荐
一个袋子中装有5个红球,3个白球,2个黑球,从中任取3个球,求其中恰有一个红球、一个白球和一个黑球的概率.
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
设函数z=f(x,-y)在点P(x,y)处可微,从x轴正向到向量l的转角为θ,从x轴的正向到向量m的转角为θ+π/2,求证:
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
下列函数在哪些点处间断,说明这些间断点的类型,如果是可去间断点,则补充定义或重新定义函数在该点的值而使之连续:
在求直线l与平面Ⅱ的交点时,可将l的参数方程x=xo+mt,y=yo+nt,z=zo+pt代入Ⅱ的方程Ax+By+Cz+D=0,求出相应的t值.试问什么条件下,t有唯一解、无穷多解或无解?并从几何上对所得结果加以说明.
设总体X的概率密度为而X1,X2…,Xn是来自总体X的简单随机样本,则未知参数θ的矩估计量为_________.
随机试题
A.烊化B.冲服C.二者均是D.二者均不是雷丸服用应()
患者,男,25岁。患"细菌性痢疾"病史,近日症见发热腹痛,里急后重,大便有脓血,口微干,舌质红,脉滑数。用药宜选
下列说法正确的是
用石油醚提取,回收溶剂后得到结晶是用甲醇或水提取出
施工现场附近有电力架空线路时,施工中应设专人监护,确认钻机安全距离在任何状态下均符合:电压在1~10kV时其安全距离为()。
某施工企业的一项设备原值为40000元,预计使用4年,预计净残值4%,采用双倍余额递减法计算各年折旧额。下列表述中错误的是()。
下列关于风险管理的特点的描述中,正确的是()。
以下各项说法不正确的是()。
相对而言,在下列四类记录、文件中,最能表明被审计单位的关联方交易的是()。
排列顺序。例如:A可是今天起晚了B平时我骑自行车上下班C所以就打车来公司BACA当一名律师是她的梦想B却还是没能实现这个愿望C可是尽管她付出了很多努力
最新回复
(
0
)