首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0.证明:存在ξ∈(a,b),使f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0.证明:存在ξ∈(a,b),使f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
admin
2018-09-20
37
问题
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0.证明:存在ξ∈(a,b),使f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
选项
答案
令F(x)=f(x)g(x),在点x=a处展开成泰勒公式,有 F(x)=F(a)+F’(a)(x一a)+[*]F"(ξ)(x一a)
a
(a<ξ<x). ① 令x=b,代入①式,则 F(b)=F(a)+F’(a)(b一a)+[*](b一a)
2
(a<ξ<b). ② 因f(a)=f(b)=g(a)=0,则F(a)=F(b)=0,且F’(a)=0,代入②式,得F"(ξ)=0.即 f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/SjW4777K
0
考研数学三
相关试题推荐
(1)若A可逆且A~B,证明:A*~B*;(2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求矩阵A的特征值;
一电路使用某种电阻一只,另外35只备用,若一只损坏,立即使用另一只更换,直到用完所有备用电阻为止,设电阻使用寿命服从参数为λ=0.01的指数分布,用X表示36只电阻的使用总寿命,用中心极限定理估计P(X>4200)(Ф(1)=0.8413,Ф(2)=0.9
设f(x)在[a,b]上连续可导,证明:∫abf(x)dx|+∫ab|f’(x)|dx.
设随机变量X服从参数为1的指数分布,则随机变量Y一min(X,2)的分布函数().
设函数f(x)满足xf’(x)一2f(x)=一x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
已知F(x),g(x)连续可导,且f’(x)=g(x),g’(x)=f(x)+φ(x),其中φ(x)为某已知连续函数,g(x)满足微分方程g’(x)-xg(x)=cosx+φ(x),求不定积分∫xf"(x)dx.
[*]被积函数为无理式,先作变量代换化为有理式后再计算.用换元积分法,作变量代换于是X=(t2一1)2,dx=4(t2一1)tdt.当x从0变到1时,t从1变到,从而
已知X1,…,Xn是来自总体X容量为n的简单随机样本,其均值和方差分别为与S2.如果EX=μ,DX=σ2,试证明:的相关系数
二元函数,其中m,n为正整数,函数在(0,0)处不连续,但偏导数存在,则m,n需满足()
随机试题
胫骨中下1/3交界处最易发生骨折的原因主要是
患者48岁,GOPO,绝经1年,自觉左侧下腹部钝痛半年,近2个月来阴道偶有阵发性阴道排液,呈血水样,无特殊气味,偶自扪及下腹部有包块。
合并糖尿病、蛋白尿的高血压患者降压宜用
功能消积导滞、清利湿热,用于兼有湿热内阻的消化不良的成药是
A.果糖B.葡萄糖C.维生素D.氨基酸E.脂肪乳维持和调节腹膜透析液渗透压的主要物质是()
对周某和冯某的行为应当如何定性?冯某在二审法院的审理过程中享有哪些诉讼权利?
某大型建筑综合楼项目,建筑面积138000㎡。某建筑公司以工程施工总承包合同承包了该项目。公司十分重视,选派了一位优秀支部书记任项目经理,该同志没有项目经理证书,也未从事过项目施工管理。项目经理个人选定了一家分包单位承包该工程,采用以包代管的管理方案。分包
“应付账款”账户的期初贷方余额为8000元,本期贷方发生额为12000元,期末贷方余额为6000元,则该账户的本期借方发生额为()。[2005年真题]
E公司将其优良资产注入F公司,F公司可以选择的支付方式有()。
我国第一本文学理论专著是()。
最新回复
(
0
)