首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=. 求可逆矩阵P,使P—1AP为对角矩阵.
设矩阵A=. 求可逆矩阵P,使P—1AP为对角矩阵.
admin
2018-08-03
29
问题
设矩阵A=
.
求可逆矩阵P,使P
—1
AP为对角矩阵.
选项
答案
由于矩阵A与B相似,所以它们有相同的特征多项式: |λE一A|=|λE一B|=(λ一1)
2
(λ一5) 由此得A的特征值为 λ
1
=λ
2
=1,λ
3
=5 对于Aλ
1
=λ
2
=1,解方程组(E一A)x=0,有 [*] 得对应于λ
1
=λ
2
=1的线性无关特征向量ξ
1
=[*] 对于λ
3
=5,解方程组(5E—A)x=0,由 [*] 得对应于λ
3
=5的特征向量ξ
3
=[*] 令矩阵P=[ξ
1
ξ
2
ξ
3
]=[*] 则矩阵P可作为所求的可逆矩阵,使得 P
—1
AP=[*]为对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/Srg4777K
0
考研数学一
相关试题推荐
证明:
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
设A为n阶矩阵,A2=A,则下列成立的是().
设A=,方程组AX=β有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
设A=相似于对角阵.求:(1)a及可逆阵P,使得P-1AP=为对角阵;(2)A100.
设α1,α2,…,αt为n个n维向量,证明:α1,α2,…,αt线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αt线性表示.
设A是m×n阶矩阵,B是n×m阶矩阵,则().
对于任意二随机变量X和Y,与命题“X和Y不相关”不等价的是
设随机变量X和Y的联合密度为(Ⅰ)试求X的概率密度f(x);(Ⅱ)试求事件“X大于Y”的概率P{X>Y};(Ⅲ)求条件概率P{Y>1|X<0.5}.
判定下列级数的敛散性,当级数收敛时判定是条件收敛还是绝对收敛:
随机试题
这个标志是何含义?
医师在治疗中确诊一名肝癌患者,他妥当的做法应是
对业主项目管理组织中各单位角色的描述,错误的是( )。
财政赤字是指()。
正卒、戍卒
梅兰芳
Internet起源于
【B1】【B5】
A、She’lltypethedocumentsfortheman.B、She’llteachthemantooperatethetypewriter.C、Shedoesn’tthinktheman’ssister
Boilerroomsareoftendirtyandsteamy,butthisoneispristine(干净的)andcool.FoxPointisaspankingnew47-unit【C1】_______
最新回复
(
0
)