首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=. 求可逆矩阵P,使P—1AP为对角矩阵.
设矩阵A=. 求可逆矩阵P,使P—1AP为对角矩阵.
admin
2018-08-03
44
问题
设矩阵A=
.
求可逆矩阵P,使P
—1
AP为对角矩阵.
选项
答案
由于矩阵A与B相似,所以它们有相同的特征多项式: |λE一A|=|λE一B|=(λ一1)
2
(λ一5) 由此得A的特征值为 λ
1
=λ
2
=1,λ
3
=5 对于Aλ
1
=λ
2
=1,解方程组(E一A)x=0,有 [*] 得对应于λ
1
=λ
2
=1的线性无关特征向量ξ
1
=[*] 对于λ
3
=5,解方程组(5E—A)x=0,由 [*] 得对应于λ
3
=5的特征向量ξ
3
=[*] 令矩阵P=[ξ
1
ξ
2
ξ
3
]=[*] 则矩阵P可作为所求的可逆矩阵,使得 P
—1
AP=[*]为对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/Srg4777K
0
考研数学一
相关试题推荐
设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4).证明:当n充分大时,随机变量Z=近似服从正态分布,并指出其分布参数.
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为一.(1)求E(Z),D(Z);(2)求ρXY;(3)X,Z是否相互独立?为什么?
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品.销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个零件的
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为,求:(1)f(x);(2)f(x)的极值.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
a,b取何值时,方程组有解?
设齐次线性方程组,其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
假设随机事件A与B相互独立,P(A)=P=a一1,P(A∪B)=,求a的值.
设二维连续型随机变量(X,Y)在区域D上服从均匀分布,其中D={(x,y)}|x+y|≤1,|x一y|≤1},求X的边缘密度fX(x)与在X=0条件下,关于Y的条件密度fY|X(y|0).
随机试题
ERG理论描述中的生存需要,大体对应需要层次理论中的()。
从文献资料来看,早在先秦时期便已出现画眉之风。()
砌筑砂浆生石灰熟化时间不少于()d。
将配置好的料液倒入异型管件外型设置的模具内,其绝热施工方法的是()。
本题中进口货物系沈阳沈港电器产业有限公司(2101930XXX)委托进口,用于生产空调设备供应国内市场。于船舶进口次日委托大连连孚物流有限公司(2102980XXX)向海关申报。
征收土地增值税时应扣除的开发成本金额为()万元。
用大豆榨油,第一次用去了1264千克,第二次用去了1432千克,第二次比第一次多出油21千克,两次共出油多少千克?
在计算机网络中,网络协议与【】模型的集合称为网络体系结构。
用户在域名为mail.dlut.edu.cn的邮件服务器上申请了一个账号,账号名为computer,则该用户的电子邮件地址是_______。
A
最新回复
(
0
)