首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ+η=k(1,2,-3)T+(2,-1,1)T,其中k是任意常数.证明: 方程组(α1+α2+α3+β,α1,α2,α3)x=β有无穷多解,并求其通解.
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ+η=k(1,2,-3)T+(2,-1,1)T,其中k是任意常数.证明: 方程组(α1+α2+α3+β,α1,α2,α3)x=β有无穷多解,并求其通解.
admin
2018-07-23
63
问题
设A
3×3
=(α
1
,α
2
,α
3
),方程组Ax=β有通解kξ+η=k(1,2,-3)
T
+(2,-1,1)
T
,其中k是任意常数.证明:
方程组(α
1
+α
2
+α
3
+β,α
1
,α
2
,α
3
)x=β有无穷多解,并求其通解.
选项
答案
因r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β)=2,故方程组(α
1
+α
2
+α
3
+β,α
1
,α
2
,α
3
)x=β有无穷多解,且其通解形式为k
1
ξ
1
+ k
2
ξ
2
+η
*
,其中ξ
1
,ξ
2
为对应的齐次方程组的基础解系η
*
为方程组的特解,k
1
, k
2
为任意常数. 由(**)式 [*] 在(***)式中取k=0,有 [*] 故方程组(α
1
+α
2
+α
3
+β,α
1
,α
2
,α
3
)x=β的通解为 k
1
ξ
1
+ k
2
ξ
2
+η
*
=k
1
ξ
1
+ k
2
(η
1
-η
2
)+η
1
= k
1
(0,1,2,-3)
T
+k
2
(-1,3,0,2)
T
+(0,2,-1,1)
T
, 其中k
1
, k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ssj4777K
0
考研数学二
相关试题推荐
求极限
设δ>0,f(x)在(一δ,δ)有连续的三阶导数,f’(0)=f’’(0)=0且.则下列结论正确的是
设函数f与g可微,z=f[xy,g(xy)+lnx],则=____________.
设α,β为3维列向量,βT为β的转置.若矩阵αβT相似于,则βTα=________.
设函数,若反常积分收敛,则
设u=f(x,y,z),ψ(x2,ey,z)=0,y=sinx,其中f,ψ都具有一阶连续偏导数,且.
(2002年试题,七)某闸门的形状与大小如图1—3—8所示,其中直线l为对称轴x闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h应为多少
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α1,α2,α
设函数φ(x)=∫0sinxf(tx2)dt,其中f(x)是连续函数,且f(0)=2,求φ’(x).
设则f(x,y)在点(0,0)处()
随机试题
通用寄存器组的相关有两种解决办法,分别是_______和_______。
《儿女英雄传》的题材类型是()
患者男,84岁。近期出现记忆力下降,静止性震颤,临床诊断为帕金森病。早期,轻症的首先药物为
肛周脓肿常见的后遗症是内痔环切术常有的后遗症是
请简述世亚行对国际竞争性招标(ICB)的审查程序。
《室外排水设计规范》规定,污水管道最小管径为()mm。
19世纪末,维新变法从一种思潮得以发展为一场政治运动,关键是()。
Inthepresenteconomic_______wecanmakeevengreaterprogressthanpreviously.
Demographyisthestatisticalstudyofhumanpopulations.Itcanbeageneralsciencethatcanbeappliedtoanykindof
Ialwayspreferstartingearly,ratherthan(leave)______everythingtothelastminute.
最新回复
(
0
)