首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ+η=k(1,2,-3)T+(2,-1,1)T,其中k是任意常数.证明: 方程组(α1+α2+α3+β,α1,α2,α3)x=β有无穷多解,并求其通解.
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ+η=k(1,2,-3)T+(2,-1,1)T,其中k是任意常数.证明: 方程组(α1+α2+α3+β,α1,α2,α3)x=β有无穷多解,并求其通解.
admin
2018-07-23
86
问题
设A
3×3
=(α
1
,α
2
,α
3
),方程组Ax=β有通解kξ+η=k(1,2,-3)
T
+(2,-1,1)
T
,其中k是任意常数.证明:
方程组(α
1
+α
2
+α
3
+β,α
1
,α
2
,α
3
)x=β有无穷多解,并求其通解.
选项
答案
因r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β)=2,故方程组(α
1
+α
2
+α
3
+β,α
1
,α
2
,α
3
)x=β有无穷多解,且其通解形式为k
1
ξ
1
+ k
2
ξ
2
+η
*
,其中ξ
1
,ξ
2
为对应的齐次方程组的基础解系η
*
为方程组的特解,k
1
, k
2
为任意常数. 由(**)式 [*] 在(***)式中取k=0,有 [*] 故方程组(α
1
+α
2
+α
3
+β,α
1
,α
2
,α
3
)x=β的通解为 k
1
ξ
1
+ k
2
ξ
2
+η
*
=k
1
ξ
1
+ k
2
(η
1
-η
2
)+η
1
= k
1
(0,1,2,-3)
T
+k
2
(-1,3,0,2)
T
+(0,2,-1,1)
T
, 其中k
1
, k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ssj4777K
0
考研数学二
相关试题推荐
设其中E是n阶单位阵,α=[a1,a2,…,an]T≠0.证明Aα,α线性相关.
A、 B、 C、 D、 A
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
x4将其余各列都加到第一列.
求极限
已知函数f(x)在区间[a,+∞)上具有2阶导数,f(a)=0,(x)>0,(x)>0,设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
求微分方程y"+4y’+4y=0的通解.
设某种商品每周的需求量X是服从区间[10,30]上均匀分布的随机变量,而经销商店进货数量为区间[10,30]中的某一整数,商店每销售一单位商品可获利500元;若供大于求则削价处理,每处理1单位商品亏损100元;若供不应求,则可从外部调剂供应,此时每1单位商
(2001年)一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时?
对数螺线r=eθ在点(r,θ)=处的切线的直角坐标方程为______.
随机试题
麻子仁丸的组成中不含
A.5年B.10年C.15年D.20年E.30年《医疗事故处理条例》规定,对60周岁以上的患者因医疗事故致残的,赔偿其残疾生活补助费的时间不超过
环境污染主要包括()等几个方面。
基本分析主要适用于()
甲公司为增值税一般纳税人,适用的增值税税率为17%。2013年12月1日,甲公司向乙公司销售一批商品,开出增值税专用发票上注明的销售价格为20万元,增值税税额为3.4万元,该批商品的成本为18万元,商品已发出,款项已收到。协议约定,甲公司应于2014年5月
“陕”这个地名,是在()出现的。
警察是国家机器的重要组成部分,是()的重要工具。
古人说:“人无志,非人也。”“志不立,天下无可成之事。”“天行健,君子以自强不息。”这些话体现了中华民族传统美德中()。
Anxietydisordersarecommonandrangefrom10percentto20percentofchildrenandteens.Girlareusuallymorelikelythanbo
Theproblemhas______simplybecauseyoudidn’tfollowmyinstructions.
最新回复
(
0
)