首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y=u(x)x是微分方程(y2+4x2)的解,则在初始条件y|x=2=0下,上述微分方程的特解是y=___________.
已知y=u(x)x是微分方程(y2+4x2)的解,则在初始条件y|x=2=0下,上述微分方程的特解是y=___________.
admin
2018-03-30
96
问题
已知y=u(x)x是微分方程
(y
2
+4x
2
)的解,则在初始条件y|
x=2
=0下,上述微分方程的特解是y=___________.
选项
答案
2xtan(x一2)
解析
由y=u(x)x,有
+u(x),于是原方程化为
x
2
x
2
(u
2
+4),
由于初值为x=2,所以在x=2的邻域不包含x=0在内的区间上,上述方程可改写成
(u
2
+4),
分离变量
将x=2,y=0代入,得u=0,C=一2.从而得特解
y=u(x)x=2xtan(x一2).
转载请注明原文地址:https://kaotiyun.com/show/SuX4777K
0
考研数学三
相关试题推荐
若级数收敛,则级数
设向量β可由向量组α1,α2,…,αn线性表示,证明:表示唯一的充分必要条件是向量组α1,α2,…,αn线性无关.
设矩阵A=I一aaT,其中I是n阶单位矩阵.a是n维非零列向量,证明:当aTa=1时,A是不可逆矩阵.
设D是由曲线y=x3与直线y=x在第一象限内围成的封闭区域,求
设n元齐次线性方程组Ax=0的系数矩阵的秩r(A)=n-3,且α1,α2,α3为此方程组的三个线性无关的解,则下列向量组中可以作为Ax=0的基础解系的是()
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3).(1)证明存在η∈(0,2),使f(η)=f(0);(2)证明存在ξ∈(0,3),使f”(ξ)=0.
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分fxy"(x,y)dxdy.
设函数z=f(u),方程u=φ(u)+∫xyP(t)dt确定u是x,y的函数,其中f(u),φ(u)可微,P(t),φˊ(u)连续,且φˊ(u)≠1.求.
设f(x)在x=x0的某邻域内有定义,在x=x0的某去心邻域内可导,则下列说法正确的是
随机试题
肾炎性肾病开始发病的年龄多在
下列关于崩漏的治疗中,错误的是
干性支气管扩张是指
下面关于确定样本单位数的说法,正确的是()。
下列会导致可口可乐需求曲线向左下方移动的是()。
学习迁移也称训练迁移,是指一种学习对()
侦查人员为了查明案件事实,可依法对犯罪嫌疑人进行询问。()
根据以下资料回答问题。下列说法正确的是()。
假设排球运动员的平均身高(单位:厘米)为μ,标准差为4.求100名排球运动员的平均身高与所有排球运动员平均身高之差在(一1,1)内的概率.
延缓衰老进程的药物这听起来有点像科幻影片,但可延缓衰老进程的药物有望变为现实。俄罗斯的科学家正在试验一种新配方,他们宣称该配方可以延缓衰老进程。他们希望这种正在老鼠、小鼠、鱼以及狗身上试验的药片能够将人类的寿命至少延长到120岁。莫斯科
最新回复
(
0
)