首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. 证明:β,Aβ,A2β线性无关;
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. 证明:β,Aβ,A2β线性无关;
admin
2015-07-22
66
问题
设A为3阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同特征值,对应的特征向量为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
.
证明:β,Aβ,A
2
β线性无关;
选项
答案
设 k
1
β+k
2
Aβ+k
3
A
2
β=0, ① 由题设Aα
i
=λ
1
α
1
(i=1,2,3),于是 Aβ=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
, A
2
β=λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
, 代入①式整理得 (k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
2
+k
3
)α
3
=0. 因为α
1
,α
2
,α
3
是三个不同特征值对应的特征向量,必线性无关,于是有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/SwU4777K
0
考研数学三
相关试题推荐
新华社2022年5月13日播发《李克强:在国务院第五次廉政工作会议上的讲话》。李克强指出,严格监督管理,促进公共资金资产资源安全高效使用。公帑不可靡费。财政性资金本质上是取之于民、用之于民,我们坚持把政府所有收支纳入预算管理,做到收入一个“(
实践证明,坚持和加强党的全面领导,是党和国家的根本所在、命脉所在,是全国各族人民的利益所在、幸福所在,是战胜一切困难和风险的“()”。
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
计算下列第二类曲面积分:
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
D是正方形区域,因在D上被积函数分块表示为[*]
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
已知线性方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组的逋解,并说明理由.
设,其中D为正方形域{(x,y)|0≤x≤1,0≤y≤1).
随机试题
从科学社会主义一般原则出发,无产阶级的历史使命是()
试述沟通的分类。
下列服药时时间,正确的是
急黄的最主要病机是
属于季铵碱的是
职业健康安全管理体系和环境管理体系运行中的实施重点是围绕()等开展活动。
个人商用房贷款的还款来源主要是()。[2010年5月真题]
美国是一个移民国家,学校的学生来自不同的种族与家庭,通过接受系统的学校教育,学生掌握现代文化知识,建立独特的族群和阶层文化,社会也因此充满生机与活力。这主要体现了教育的()
定义:①接近权:指大众即社会的每一个成员都有接近、利用媒介发表意见、观点的自由权利,实际上是通过新闻媒介而实现的表达权。②更正权:指当与己有关的报道出现错误时,当事者拥有要求同一传媒予以更正或登载反驳文章的权利。③知晓权:
下面哪一条指令不能使进位标志CF置“0”?
最新回复
(
0
)