首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. (Ⅰ)求a的值; (Ⅱ)将β1,β2,β3用α1,α2,α3线性表示.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. (Ⅰ)求a的值; (Ⅱ)将β1,β2,β3用α1,α2,α3线性表示.
admin
2017-04-24
71
问题
设向量组α
1
=(1,0,1)
T
,α
2
=(0,1,1)
T
,α
3
=(1,3,5)
T
不能由向量组β
1
=(1,1,1)
T
,β
2
=(1,2,3)
T
,β
3
=(3,4,a)
T
线性表示.
(Ⅰ)求a的值;
(Ⅱ)将β
1
,β
2
,β
3
用α
1
,α
2
,α
3
线性表示.
选项
答案
4个3维向量β
1
,β
2
,β
3
,α
i
线性相关(i=1,2,3),若β
1
,β
2
,β
3
线性无关,则α
i
可由β
1
,β
2
,β
3
线性表示(i=1,2,3),这与题设矛盾,于是β
1
,β
2
,β
3
线性相关,从而 0=|β
1
,β
2
,β
3
|=[*] 于是a=5.此时,α
1
不能由向量组β
1
,β
2
,β
3
线性表示. 考虑下列矩阵的初等行变换 [β
1
,β
2
,β
3
|α
1
,α
2
,α
3
]=[*] 可见当a≠5时,α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示;当a=5时,α
1
,α
2
不能由β
1
,β
2
,β
3
线性表示,故a=5. (Ⅱ)令矩阵A=[α
1
,α
2
,α
3
|β
1
,β
2
,β
3
],对A施行初等行变换 [*] 从而,β
1
=2α
1
+4α
2
一α
3
,β
2
=α
1
+2α
2
,β
3
=5α
1
+10α
2
一 2α
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Syt4777K
0
考研数学二
相关试题推荐
证明:当x>0时,ex-1>(1+x)ln(1+x).
设y=ex是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解。
求微分方程(x-2xy-y2)+y2=0的通解。
求下列微分方程的通解。(ex+y-ex)dx+(ex+y+ey)dy=0
某公司每年的工资总额比上一年增加20%的基础上再追加2百万元,若以Wt表示第t年的工资总额(单位:百万元),则Wt满足的差分方程是________。
设y=(C1+C2x)e2x是某二阶常系数线性微分方程的通解,求对应的方程。
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
设A为n阶可逆矩阵,则下列结论正确的是().
设A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
设矩阵A与B相似,且求a,b的值;
随机试题
鼓胀的病因不包括
We’dbettertakeevery______toimproveourEnglish.
非细菌性肝脓肿的临床表现是
某奶牛场部分奶牛产犊1周后,只采食少量粗饲料,病初粪干,后腹泻,迅速消瘦,乳汁呈浅黄色,易引起泡沫;奶、尿液和呼出气有烂苹果味。病牛血液生化检测可能出现()。
生产性项目总投资分为()。
“出口日期”栏:()。“包装种类”栏:()。
我国合同法将违约金视为违约损害赔偿的预定额。
A.条件(1)充分,但条件(2)不充分。B.条件(2)充分,但条件(1)不充分。C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分。D.条件(1)充分,条件(2)也充分。E.条件(1)和条件(2)单独都不充分,条件(1)和
考虑二元函数f(χ,y)在点(χ0,y0)处的下面四条性质:①连续②可微③f′χ(χ0,y0)与f′y(χ0,y0)存在④f′χ(χ,y)与f′y(χ,y)连续若用“PQ”表示可由性质P推出性质Q,则有().
BecauseJenkinsneither______nordefendseithermanagementorthestrikingworkers,bothsidesadmirehisjournalistic______
最新回复
(
0
)