首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二元函数f(x,y)在点(0,0)处可微的一个充要条件是( )
二元函数f(x,y)在点(0,0)处可微的一个充要条件是( )
admin
2018-04-14
412
问题
二元函数f(x,y)在点(0,0)处可微的一个充要条件是( )
选项
A、
B、
C、
D、
答案
C
解析
选项A证明f(x,y)在点(0,0)处连续。选项B证明两个一阶偏导数f
x
’(0,0)=0,f
y
’(0,0)=0存在,因此A、B均不能保证f(x,y)在点(0,0)处可微。
选项D只能得到两个一阶偏导数f
x
’(0,0),f
y
’(0,0)存在,但不能推导出两个一阶偏导函数f
x
’(x,y),f
y
’(x,y)在点(0,0)处连续,因此也不能保证f(x,y)在点(0,0)处可微。
由选项C中极限式
可知f(x,y)-f(0,0)=o(
)=0.x+0.y+0(
),
其中ρ=
。对照全微分定义,相当于x
0
=0,y
0
=0,△x=x,△y=y,A=0,B=0。可见f(x,y)在(0,0)点可微,故选择C。
转载请注明原文地址:https://kaotiyun.com/show/TCk4777K
0
考研数学二
相关试题推荐
[*]
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设已知线性方程组Ax=6存在2个不同的解。求λ.a;
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求方程f(x1,x2,x3)=0的解.
设A为n阶非奇异矩阵,a为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设曲线方程为γ=e-x(x≥0).(I)把曲线y=e-x(x≥0)、x轴、y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ),求满足(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出
设曲线L位于xOy平面的第一象限内,L上任意_一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点(3/2,3/2),求L的方程.
这是求隐函数在某点的全微分.这里点(1,0,-1)的含意是z=z(1,0)=-1.[*]
(2000年试题,二)具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是().
求由曲线y=1+sinx与直线y=0,x=0,x=π围成的曲边梯形绕Ox轴旋转而成旋转体体积V.
随机试题
关于控制供料成本措施的说法,错误的是()。
依据前提是否涉及某类事物的全体,归纳推理可分为()和()。
B:OK.Look!Thetrainiscoming.
环境管理体系和职业健康安全管理体系的运行采用了戴明模型,即通过()等各个环节构成一个动态循环的过程,经过持续改进,不断提高管理系统运行水平,形成螺旋上升式系统化管理模式。
合同的标的是合同的( )。
在下列贷款方式中,属于援助性的是()
甲公司、乙公司与刘某、谢某欲共同设立一个注册资本为200万元的有限责任公司,他们在拟订公司章程时约定各自的出资方式中,不符合公司法律制度规定的有()。
标题音乐是一种用________来说明作曲家创作意图和作品思想内容的器乐曲。
人民警察职业道德要求人民警察爱憎分明,热爱人民。()
上调最低工资标准,是()最直接、有效的措施。
最新回复
(
0
)