首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二元函数f(x,y)在点(0,0)处可微的一个充要条件是( )
二元函数f(x,y)在点(0,0)处可微的一个充要条件是( )
admin
2018-04-14
397
问题
二元函数f(x,y)在点(0,0)处可微的一个充要条件是( )
选项
A、
B、
C、
D、
答案
C
解析
选项A证明f(x,y)在点(0,0)处连续。选项B证明两个一阶偏导数f
x
’(0,0)=0,f
y
’(0,0)=0存在,因此A、B均不能保证f(x,y)在点(0,0)处可微。
选项D只能得到两个一阶偏导数f
x
’(0,0),f
y
’(0,0)存在,但不能推导出两个一阶偏导函数f
x
’(x,y),f
y
’(x,y)在点(0,0)处连续,因此也不能保证f(x,y)在点(0,0)处可微。
由选项C中极限式
可知f(x,y)-f(0,0)=o(
)=0.x+0.y+0(
),
其中ρ=
。对照全微分定义,相当于x
0
=0,y
0
=0,△x=x,△y=y,A=0,B=0。可见f(x,y)在(0,0)点可微,故选择C。
转载请注明原文地址:https://kaotiyun.com/show/TCk4777K
0
考研数学二
相关试题推荐
当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解.
设周期函数f(x)在(﹣∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5,f(5))处的切线的斜率为().
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导.
考察一元函数f(x)的下列四条性质:①f(x)在区问[a,b]上连续②f(x)在区间[a,b]上可积③f(x)在区间[a,b]上存在原函数④f(x)在区间[a,b]上可导若用P→Q表示可由性质P推出性质Q,则有().
求下列不定积分:
求连续函数f(x),使它满足f(x)+2∫0xf(t)dt=x2.
微分方程y’’-y=ex+1的一个特解应具有形式(式中a、b为常数)为().
(1999年试题,五)求初值问题,的解.
设则二次型的对应矩阵是__________.
微分方程y"+y=x2+1+sinx的特解形式可设为
随机试题
利用物价指数法评估进口设备时,其价格变动指数应采用【】
下列各项中哪项是食管癌最典型的临床症状
肝十二指肠韧带中结构正确的是
建设项目环境影响评价工作按()分别划分评价等级。
无烟煤
甲公司为扩大生产,决定引进国外某企业的专用加工设备,为节省资金投入,甲公司与乙租赁公司(以下简称乙公司)签订融资租赁合同。合同约定:乙公司按甲公司要求,从国外购进专用加工设备租赁给甲公司使用;租赁期限为5年,年租金100万元;未约定租期届满后该专用加工设备
物业服务企业在提供物业管理服务过程中发生的,与物业管理服务活动没有直接联系,属于某一会计期间耗用的费用为()。
应用文常见表达方式不包括()。
浙江省南部最大的湖泊是()。
Everyyear,depressionaffectsmorethat19millionAmericans,butmenaccountforonlyaboutonein10diagnosedcases.Because
最新回复
(
0
)