首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列微分方程的通解: (Ⅰ) y"一3y’=2—6x; (Ⅱ) y"+y=2cosx; (Ⅲ) y"+4y’+5y=40cos3x.
求下列微分方程的通解: (Ⅰ) y"一3y’=2—6x; (Ⅱ) y"+y=2cosx; (Ⅲ) y"+4y’+5y=40cos3x.
admin
2017-10-23
37
问题
求下列微分方程的通解:
(Ⅰ) y"一3y’=2—6x;
(Ⅱ) y"+y=2cosx;
(Ⅲ) y"+4y’+5y=40cos3x.
选项
答案
(Ⅰ)先求对应齐次微分方程的通解,因其特征方程为λ
2
—3λ=λ(λ一3)=0,故通解为 [*](x)=C
1
+C
2
e
3x
. 再求非齐次微分方程的特解,由于其自由项为一次多项式,而且0是特征方程的单根,所以特解应具形式y
*
(x)=x(Ax+B),代入原方程,得 [y
*
(x)]"一3[y
*
(x)]’=2A一3(2Ax+B)=一6Ax+2A一3B=2—6x. 比较方程两端的系数,得[*]解得A=1,B=0,即特解为y
*
(x)=x
2
.从而,原方程的通解为 y(x)=x
2
+C
1
+C
2
e
3x
,其中C
1
,C
2
为任意常数. (Ⅱ)由于对应齐次微分方程的特征方程为λ
2
+1=0,特征根为±i,所以其通解应为C,cosx+C
2
sinx;从而y"+y=2cosx的特解应具形式:y
*
(x)=Axcosx+Bxsinx.代入原方程,可求得A=0,B=1,即y
*
(x)=xsinx.故原方程的通解为 y(x)=C
1
cosx+C
2
sinx+xsinx,其中C
1
,C
2
为任意常数. (Ⅲ)由于对应齐次微分方程的特征方程为λ
2
+4λ+5=0,特征根为一2±i,所以其通解应为 e
—2x
(C
1
cosx+C
2
sinx).又因3i不是特征根,所以方程y"+4y’+5y=40cos3x的特解应具有形式y
*
(x) =Acos3x+Bsin3x.代入原方程可得A=一1,B=3.这样就得到原方程的通解为 y(x)=e
—2x
(C
1
cosx+C
2
sinx)+3sin3x—cos3x,其中C
1
,C
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/TEX4777K
0
考研数学三
相关试题推荐
当x→0时,,则a=__________.
求二元函数z=f(x,y)=x2y(4一x—y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设随机变量X与Y相互独立,下表列出二维随机变量(X,Y)的联合分布律及关于X和Y的边缘分布律的部分数值,试将其余的数值填入表中空白处.
设随机变量X,Y独立同分布,且P(X=i)=,i=1,2,3.设随机变量U=max{X,Y),V=min(X,Y}.(1)求二维随机变量(U,V)的联合分布;(2)求Z=UV的分布;(3)判断U,V是否相互独立?(4)求P(U
设随机变量X和Y都服从正态分布,则().
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设总体X~F(x,θ)=,样本值为1,1,3,2,1,2,3,3,求θ的矩估计和最大似然估计.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(A)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2,销售量分别为q1和q2,需求函数分别为q1=24—0.2p1和q2=10一0.05p2,总成本函数为C=35+40(q1+q2).试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大总利
设二维连续型随机变量(X,Y)在区域D={(x,y)|0≤y≤x≤3一y,y≤1}上服从均匀分布,求边缘密度fX(x)及在X=x条件下,关于Y的条件概率密度.
随机试题
诊断成人肺结核最可靠的依据是
与双胎妊娠关系不大的是
下列关于证明的哪一表述是正确的?(2014年卷三45题,单选)
对开发完成后的房地产价值、开发成本等的测算,在传统方法中是根据开发完成后的房地产市场状况作出的。()
下列风险管理工作中,属于风险分析与评价工作的任务的有()。
依据企业所得税法的规定,下列各项中按负担所得的所在地确定所得来源地的是()。
脍炙人口的戏曲《打金枝》是豫剧。()
某师范学院给师范生开设“20世纪数学思想史”课,按照舒尔曼的教学知识分类框架,此课程核心功能是增进教师的()。
王彬与李兰于1999年5月1日举行婚礼并同居。同年8月,李兰继承了父亲的遗房1间。10月,王彬与李兰办理了结婚登记,领取了结婚证书。2001年2月,李兰生下一子。期间,王彬向朋友借款2000元用于购买各种母婴用品,另瞒着妻子向朋友借款3000元帮胞弟购房。
What’sthepercentage(百分数)ofpeoplelivingintownsnow?Townsarenowcrowdedbecause______.
最新回复
(
0
)