首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f(ξ)=0.
设f(x)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f(ξ)=0.
admin
2016-09-13
66
问题
设f(x)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(x)cosxdx=∫
0
π
f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f(ξ)=0.
选项
答案
首先证明f(x)在(0,π)内必有零点. 因为在(0,π)内f(x)连续,且sinx>0,所以,若无零点,则恒有f(x)>0或f(x)<0,从而有∫
0
π
f(x)sinxdx>0或∫
0
π
f(x)sinxdx<0,与题设矛盾.所以f(x)在(0,π)内必有零点. 下面证明f(x)在(0,π)内零点不唯一,即至少有两个零点. 用反证法.假设f(x)在(0,π)内只有一个零点x
0
,则f(x)在(0,x
0
)和(x
0
,π)上取不同的符号(且不等于零),否则与∫
0
π
f(x)sinxdx=0矛盾.这样,函数sin(x-x
0
)f(x)在(0,x
0
)和(x
0
,π)上取相同的符号,即恒正或恒负. 那么有:∫
0
π
f(x)sin(x-x
0
)dx≠0.但是 ∫
0
π
f(x)sin(x-x
0
)dx=∫
0
π
f(x)(sinxcosx
0
-cosxsinx
0
)dx =cosx
0
∫
0
π
f(x)sinxdx-sinx
0
∫
0
π
f(x)cosxdx=0. 从而矛盾,所以f(x)在(0,π)内至少有两个零点.于是由罗尔定理即得存在ξ∈(0,π),使得fˊ(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/TRT4777K
0
考研数学三
相关试题推荐
一个袋子中装有5个红球,3个白球,2个黑球,从中任取3个球,求其中恰有一个红球、一个白球和一个黑球的概率.
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
下列各函数均为x→0时为无穷小,若取x为基本无穷小,求每个函数的阶:
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
设空间区域Ω={(x,y,z)|x2+y2+z2≤a2},Ω1={(x,y,z)|x2+y2+z2≤a2,x≥0,y≥0,z≥0},则下列等式不成立的是__________.
(1)怎样建立向量a与有序数组ax、ay、az之间的一一对应关系?数ax、ay、az的几何意义是什么?(2)分别叙述两个向量a、b平行和垂直的充要条件,并给出充要条件的坐标表示式.(3)叙述三个向量a、b、c共面的充要条件,并给出充要条件的坐标表示式.
计算下列各立体的体积:(1)抛物线y2=4x与直线x=1围成的图形绕z轴旋转所得的旋转体;(2)圆片x2+(y-5)2≤16绕x轴旋转所得的旋转体;(3)摆线x=a(t-sint),y=a(1-cost)的一拱(0≤t≤2π)与x轴围成的图形绕直线y
利用二重积分的性质比较下列积分的大小:
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则a=______,b=______.
设当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n等于
随机试题
如果企业闲置设备很多,管理效率低下,则表明固定资产周转率
在流行病学研究中,选入到研究中的研究对象与没有被选入者特征上的差异所造成的系统误差是
关于Shift阿尔辛蓝地衣红染色法的叙述,错误的是
半数以上股份被另一公司持有并受其控制的公司为()。
1998年3月1日,甲将自己的一套住房出租给乙,双方签订房屋租赁合同并约定租期22年。2017年3月1日,甲又将该房屋抵押给丙,并办理了抵押登记。2018年3月1日,丙行使抵押权拍卖该房屋,丁以100万元的价格购得该套房屋并办理了过户手续。现在,丁要求乙搬
本票可以是远期的,远期本票像远期汇票一样也存在承兑行为。()
根据凯恩斯的流动性偏好理论,决定货币需求的动机包括()。Ⅰ.交易动机Ⅱ.预防动机Ⅲ.储蓄动机Ⅳ.投机动机
行为锚定等级评价是一种()。这种绩效考核最大的缺点在于()。
--Doyouknowwhoinvented______telephone?--No,Butitisreally______telephone?
Whatdoesyourdoctorusuallyadviseyoutodowhenyou’requitesick?To______.Whatwillkeepasickmanworkingwhenhesh
最新回复
(
0
)