首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f(ξ)=0.
设f(x)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f(ξ)=0.
admin
2016-09-13
45
问题
设f(x)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(x)cosxdx=∫
0
π
f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f(ξ)=0.
选项
答案
首先证明f(x)在(0,π)内必有零点. 因为在(0,π)内f(x)连续,且sinx>0,所以,若无零点,则恒有f(x)>0或f(x)<0,从而有∫
0
π
f(x)sinxdx>0或∫
0
π
f(x)sinxdx<0,与题设矛盾.所以f(x)在(0,π)内必有零点. 下面证明f(x)在(0,π)内零点不唯一,即至少有两个零点. 用反证法.假设f(x)在(0,π)内只有一个零点x
0
,则f(x)在(0,x
0
)和(x
0
,π)上取不同的符号(且不等于零),否则与∫
0
π
f(x)sinxdx=0矛盾.这样,函数sin(x-x
0
)f(x)在(0,x
0
)和(x
0
,π)上取相同的符号,即恒正或恒负. 那么有:∫
0
π
f(x)sin(x-x
0
)dx≠0.但是 ∫
0
π
f(x)sin(x-x
0
)dx=∫
0
π
f(x)(sinxcosx
0
-cosxsinx
0
)dx =cosx
0
∫
0
π
f(x)sinxdx-sinx
0
∫
0
π
f(x)cosxdx=0. 从而矛盾,所以f(x)在(0,π)内至少有两个零点.于是由罗尔定理即得存在ξ∈(0,π),使得fˊ(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/TRT4777K
0
考研数学三
相关试题推荐
[*]
0
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
若α1,α2,…,αs的秩为r,则下列结论正确的是().
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
利用定积分的几何意义求出下列积分:
求抛物线y=ax2+bx+c上具有水平切线的点.
已知某曲线经过点(1,1),它的切线在纵轴上的截距等于切点的横坐标,求它的方程.
设α=(1,0,-1)T,矩阵A=ααT,n为正整数,则丨aE-An丨=___________.
随机试题
下列选项中不易引起金黄色葡萄球菌食物中毒的是________。
婴儿颅内压增高时最早的体征
下列疾病均可出现黏液脓血便,但除外
大面积烧伤患者,来院时,神志清,血压低80/50mmHg,经积极补液后回升至正常范围,第4天又出现发热,体温38.5℃,血压降至75/50mmHg,心率120次/分,降钙素原测定阳性。考虑发生了
幼儿园马老师和三个小朋友情情、可可和安安一起玩“猜一猜,我最棒”的游戏。马老师对小朋友们说:“我把手中的红球、黄球和蓝球分别放在这个柜子的三个抽屉里,请你们猜一猜每只抽屉里放的是什么颜色的球?猜对了奖励小红花!”然后,她请小朋友们闭上眼睛,把三只球分别放在
海关在企业评定为AA类等级之前进行准入式稽查,验证企业是否符合海关管理要求,以确保AA类企业的进出口活动不脱离海关监管。()
支付已宣告的现金股利时所有者权益减少。()
下列各项中,以填充库存为目的的采购模式是()。
①直到此时,人们才会相信,动物更有种为人类所不理解的无声的哀怨②但是直到真的看到了动物的泪,我才相信动物也和人一样,它们也有悲伤,更有痛苦③只是因为它们没有语言,或者是人类还不能破译它们的语言,所以,当人们看到动物的泪水时,才会感动惊愕
《邻居》
最新回复
(
0
)