首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f(ξ)=0.
设f(x)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f(ξ)=0.
admin
2016-09-13
68
问题
设f(x)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(x)cosxdx=∫
0
π
f(x)sinxdx=0.证明:存在ξ∈(0,π),使得f(ξ)=0.
选项
答案
首先证明f(x)在(0,π)内必有零点. 因为在(0,π)内f(x)连续,且sinx>0,所以,若无零点,则恒有f(x)>0或f(x)<0,从而有∫
0
π
f(x)sinxdx>0或∫
0
π
f(x)sinxdx<0,与题设矛盾.所以f(x)在(0,π)内必有零点. 下面证明f(x)在(0,π)内零点不唯一,即至少有两个零点. 用反证法.假设f(x)在(0,π)内只有一个零点x
0
,则f(x)在(0,x
0
)和(x
0
,π)上取不同的符号(且不等于零),否则与∫
0
π
f(x)sinxdx=0矛盾.这样,函数sin(x-x
0
)f(x)在(0,x
0
)和(x
0
,π)上取相同的符号,即恒正或恒负. 那么有:∫
0
π
f(x)sin(x-x
0
)dx≠0.但是 ∫
0
π
f(x)sin(x-x
0
)dx=∫
0
π
f(x)(sinxcosx
0
-cosxsinx
0
)dx =cosx
0
∫
0
π
f(x)sinxdx-sinx
0
∫
0
π
f(x)cosxdx=0. 从而矛盾,所以f(x)在(0,π)内至少有两个零点.于是由罗尔定理即得存在ξ∈(0,π),使得fˊ(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/TRT4777K
0
考研数学三
相关试题推荐
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
A、 B、 C、 D、 D根据事件的并的定义,凡是出现“至少有一个”,均可由“事件的并”来表示,而事件“不发生”可由对立事件来表示,于是“A,B,C至少有一个不发生”等价于“A,B,C中至少有一个发生”,故答
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
求下列三重积分
将下列函数展成麦克劳林级数:
利用高斯公式计算第二类曲面积分:
求下列数项级数的和函数:
设n阶矩阵A与B等价,则必有().
设D是平面有界闭区域,f(x,y)在D上连续,证明:若f(x,y)在D上非负,且
随机试题
脂酸β—氧化一个循环的产物不包括
黄芩含有黄芩苷、黄芩素、汉黄芩苷、汉黄芩素。其中黄芩苷是主要有效成分,具有抗菌、消炎作用,是中成药“注射用双黄连(冻干)”的主要成分。《中国药典》以黄芩苷为指标成分进行含量测定。黄芩苷属于
为了实现进度目标,应选择合理的合同结构,以避免过多的合同交界面而影响工程的进展,这属于进度控制的()。
公司营业用主要资产的抵押、出售或者报废一次超过该资产( )的情况,属于内幕信息。
Somechildrenwanttochallengethemselvesbylearningalanguagedifferentfromtheirparentsspeakathome.
某学校组织一次教工接力比赛,共准备了25件奖品分发给获得一、二、三等奖的职工。为设计获得各级奖励的人数,制定两种方案:若一等奖每人发5件,二等奖每人发3件,三等奖每人发2件,刚好发完奖品;若一等奖每人发6件,二等奖每人发3件,三等奖每人发1件,也刚好发完奖
In1999,thepriceofoilhoveredaround$16abarrel.By2008,ithad(21)______the$100abarrelmark.Thereasonsforthe
垄断高价和垄断低价并未否定价值规律,因为()
Onereasonhumanbeingscanthriveinallkindsofclimatesisthattheycancontrolthequalitiesoftheairintheenclosedsp
A、Thewayforwomentoquitsmoking.B、Thedefectsofsmokingtowomen.C、Themeritsofsmokinginmakingprogress.D、Themerits
最新回复
(
0
)