首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
admin
2019-07-22
61
问题
已知A是n阶矩阵,α
1
,α
2
,…,α
s
是n维线性无关向量组,若Aα
1
,Aα
2
,…,Aα
s
线性相关,证明:A不可逆.
选项
答案
因Aα
1
,Aα
2
,…,Aα
s
线性相关,故存在不全为零的数k
1
,k
2
,…,k
s
,使得 k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
=0, 即 A(k
1
α
1
+k
2
α
2
+…+k
s
α
s
)=Aξ=0. 其中ξ=k
1
α
1
+k
2
α
2
+…+k
s
α
s
成立,因已知α
1
,α
2
,…,α
s
线性无关,对任意不全为零的k
1
,k
2
,…,k
s
有 ξ=k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0, 而 Aξ=0。 说明线性方程组AX=0有非零解,从而|A|=0,A是不可逆矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/ThN4777K
0
考研数学二
相关试题推荐
改变积分次序
设f(χ),g(χ)在[a,b]上连续,证明:存在ξ∈(a,b),使得f(ξ)∫ξbg(χ)dχ=g(ξ)∫aξ(χ)dχ.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
计算二重积分I=∫01dx
(Ⅰ)设ex+y=y确定y=y(x),求y’,y’’;(Ⅱ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
积分∫aa+2πcosxln(2+cosx)dx的值
求f(x)=3x带拉格朗日余项的n阶泰勒公式.
设A,B是同阶方阵.若A,B均是实对称矩阵,证明A~BA,B有相同的特征多项式.
设f(x)为n+1阶可导函数,求证:f(x)为n次多项式的充要条件是f(n+1)(x)≡0,f(n)(x)≠0.
随机试题
结核性脑膜炎治愈的标准,不包括
严重肝病时糖有氧氧化及三羧酸循环失常可导致
冷哮发作期治宜饮邪犯肺治宜
利用排水固结法处理地基时,必须具备下列何项条件,才能获得良好的处理效果( )。
把项目的可交付成果划分为较小的、更易管理的多个单元,是工程项目组织与管理中的()。
背景某热力管线暗挖隧道,长3.2km,断面尺寸为3.2m×2.8m,埋深3.5m。隧道穿越砂土层和砂砾层,除局部有浅层滞水外,无需降水。承包方A公司通过招标将穿越砂砾层段468m隧道开挖及支护分包给B专业公司。B公司依据A公司的施工组织设计,进场后由工
以下不属于短期政府债券的特点的是()。
学校心理辅导是学校实施心理健康教育的主渠道,下列对学校心理辅导理解正确的一项是()
基于卫星等航天器的空间量子通信,_______。第一个原因是在同样距离下,光子在光纤中的损耗量远高于自由空间的损耗。因为光子在自由空间的损耗主要来自光斑的发散,大气对光子的吸收和散射远小于光纤。第二个原因是受到地面条件的限制,很多地方无法铺设量子通信的专用
CyberCafe(网吧)computercentersarefoundinmanycitiesaroundtheworld.Now,afewAmericanhighschoolsare【B1】______thesec
最新回复
(
0
)