设f(χ)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=0,且|f′(χ)|≤2.证明:|∫02f(χ)dχ|≤2.

admin2018-05-17  26

问题 设f(χ)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=0,且|f′(χ)|≤2.证明:|∫02f(χ)dχ|≤2.

选项

答案由微分中值定理得f(χ)-f(0)=f′(ξ1)χ,其中0<ξ1<χ,f(χ)-f(2)=f′(ξ1)(χ-2),其中χ<ξ2<2, 于是[*] 从而|∫02f(χ)dχ|≤∫02|f(χ)|dχ=∫01|f(χ)|dχ+∫12|f(χ)|dχ ≤∫012χdχ+∫122-2(2-χ)dχ=2.

解析
转载请注明原文地址:https://kaotiyun.com/show/u5k4777K
0

最新回复(0)