首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 设α1,α2,α3均为三维列向量.记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3].如果∣A∣=1,那么∣B∣=_________.
[2005年] 设α1,α2,α3均为三维列向量.记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3].如果∣A∣=1,那么∣B∣=_________.
admin
2021-01-19
59
问题
[2005年] 设α
1
,α
2
,α
3
均为三维列向量.记矩阵A=[α
1
,α
2
,α
3
],B=[α
1
+α
2
+α
3
,α
1
+2α
2
+4α
3
,α
1
+3α
2
+9α
3
].如果∣A∣=1,那么∣B∣=_________.
选项
答案
将分块矩阵B改写为分块矩阵A右乘另一数字矩阵的形式,再在等式两边取行列式;也可利用行列式性质恒等变形找出∣A∣与∣B∣的关系,从而求出∣B∣. 解一 B=[α
1
+α
2
+α
3
,α
1
+2α
2
+4α
3
,α
1
+3α
2
+9α
3
]=[α
1
,α
2
,α
3
][*]=AC,其中C=[*]为三阶范德蒙行列式,则∣C∣=2,故∣B∣=∣A∣∣C∣=1×2=2. 解二 用行列式性质将∣B∣化为∣A∣的线性函数,找出∣A∣与∣B∣的关系,求出∣B∣. ∣B∣[*]∣α
1
+α
2
+α
3
,α
2
+3α
3
,α
2
+5α
3
∣ [*]∣α
1
+α
2
+α
3
,α
2
+3α
3
,2α
3
∣ [*]∣α
1
+α
2
+α
3
,α
2
,2α
3
∣=2∣α
1
+α
2
+α
3
,α
2
,α
3
∣ [*]2∣α
1
,α
2
,α
3
∣=2∣A∣=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/Tr84777K
0
考研数学二
相关试题推荐
设y(χ)为微分方程y〞-4y′+4y=0满足初始条件y(0)=1,y′(0)=2的特解,则∫01y()dχ=_______.
方程=0的实根是_______.
设A=,A*是A的伴随矩阵,求(A*)-1.
设三元二次型χ12+χ22+5χ32+2tχ1χ2-2χ1χ3+4χ2χ3是正定二次型,则t∈_______.
设函数f(χ)(χ≥0)可微,且f(χ)>0.将曲线y=f(χ),χ=1,χ=a(a>1)及χ轴所围成平面图形绕χ轴旋转一周得旋转体体积为[a2f(a)-f(1)].若f(1)=,求:(1)f(χ);(2)f(χ)的极值.
设向量组α1=(a,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,回答下列问题:β可由α1,α2,α3线性表出,但表示不唯一,求出一般表达式。
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
(2003年试题,十二)已知平面上三条不同直线的方程分别为l1:ax+2b+3c=0l2:bx+2cy+3a=0l3:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
(1990年)求微分方程y〞+4y′+4y=eaχ之通解,其中a为实数.
(89年)∫aπtsintdt=_______.
随机试题
立功分为_______。
夫妻一方财产
A.安神定志九B.酸枣仁汤C.琥珀多寐丸D.交泰丸
接受腹腔镜检查病人的术前准备内容,包括( )。
女,28岁,继发不孕,6年前人工流产一次,现有痛经及性交痛。妇科检查:子宫后位固定、疼痛,双附件区增厚、触痛(+/-)。下一步最佳处理方法是( )
容易出现粘膜广泛压痛的情况是容易造成义齿不能就位、翘动、不稳定的情况是
爆炸性物质分为()类。
微电子技术是微小型电子元器件和电路的研制、生产以及用它们实现电子系统功能的技术。()
将考生文件夹下TIN文件夹中的文件CBA.EXP设置成隐藏属性。
PeteristallerthanSandy.Daniellikesswimmingbest.
最新回复
(
0
)