首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
admin
2019-07-22
37
问题
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
选项
答案
必要性.对矩阵A按列分块A=(α
1
,α
2
,…,α
n
),则 [*],Ax=b有解[*]α
1
,α
2
,…,α
n
可表示任何n维向量b [*]α
1
,α
2
,…,α
n
可表 示e
1
=(1,0,0,…,0)
T
,e
2
=(0,1,0,…,0)
T
,…,e
n
=(0,0,0,…,1)
T
[*]r(α
1
,α
2
,…,α
n
)≥r(e
1
,e
2
,…,e
n
)=n [*]r(A)=n. 所以|A|≠0. 充分性.由克莱姆法则,行列式|A|≠0时方程组必有唯一解,故[*],Ax=b总有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/KLN4777K
0
考研数学二
相关试题推荐
函数y=x2+6x+1的图形在点(0,1)处的切线与x轴交点的坐标是()
当n→∞时-e是的
设B=,求B-1.
设f(t)二阶可导,g(u,v)二阶连续可偏导,且z=f(2χ-y)+g(χ,χy),求
讨论f(χ,y)=在点(0,0)处的连续性、可偏导性及可微性.
设f(χ,y)=讨论函数f(χ,y)在点(0,0)处的连续性与可偏导性.
设函数其中f(x)在x=0处二阶可导f”(0)≠0,f’(0)=0,f(0)=0,则x=0是F(x)的()
设f(χ)二阶连续可导,且f(0)=f′(0)=0,f〞(0)≠0,设u(χ)为曲线y=f(χ)在点(χ,f(χ))处的切线在χ轴上的截距,求.
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.(1)确定a,使S1+S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
(02年)某闸门的形状与大小如图2.11所示.其中直线l为对称轴.闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的压力之比为5:4,闸门矩形部分的高h应为多少m(米)?
随机试题
背景东北某市新建一建筑面积39600m2的文化体育中心工程,地上6层,地下2层,局部埋深9m。工程选址位于某山坡,一半基础须回填,混凝土灌注桩局部桩承台加整体筏板基础,地上钢筋混凝土框架结构。3层会议厅主梁采用预制钢筋混凝土,1000人餐厅采用预应力混凝
我国社会主义四个现代化是( )
下列哪种物质是结合胆红素()(2006年)
引起自身免疫病的因素有
患儿女,6岁。因患风湿热服用青霉素和阿司匹林,近日患儿出现食欲下降.恶心等不适症状,护士可以给予的正确指导是()。
住宅专项维修资金管理实行()的原则。
素菜的特点有()。
长期以来床上抽烟是家庭火灾的主要原因。尽管在过去的20年中,抽烟的人数显著下降,但是死于家庭火灾的人数并没有相应的下降。在过去的20年中,下面的陈述,如果正确,除了哪一项之外都有助于解释上面论述中的明显的分歧?( )
沼气:甲烷:气体
Usingtheinformationinthetext,completeeachsentence14~18,withawordorphrasefromthelistbelow.Foreachsentenc
最新回复
(
0
)