首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设γ1,γ2,…,γt和η1,η2…ηs分别是AX=0和BX=0的基础解系.证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
设γ1,γ2,…,γt和η1,η2…ηs分别是AX=0和BX=0的基础解系.证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
admin
2016-09-19
53
问题
设γ
1
,γ
2
,…,γ
t
和η
1
,η
2
…η
s
分别是AX=0和BX=0的基础解系.证明:AX=0和BX=0有非零公共解的充要条件是γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关.
选项
答案
必要性 由γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关,知存在k
1
,k
2
,…,k
t
,l
1
,l
2
,…,l
s
不全为零,使得 k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
+l
1
η
1
+l
2
η
2
+…+l
s
η
s
=0. 令ξ=k
1
γ
1
+k
2
γ
2
…+k
t
γ
t
,则ξ≠0(否则k
1
,k
2
,…,k
t
,l
1
,l
2
,…,l
s
全为0),且ξ=-l
1
η
1
-l
2
η
2
-…-l
s
η
s
, 即非零向量考既可由γ
1
,γ
2
,…,γ
t
表示,也可由η
1
,η
2
,…,η
s
表示,所以Ax=0和BX=0有非零公共解. 充分性 若Ax=0和Bx=0有非零公共解,假设为ξ≠0,则ξ=k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
且ξ=-l
1
η
1
-l
2
η
2
-…-l
s
η
s
,于是,存在k
1
,k
2
,…,k
t
不全为零,存在l
1
,l
2
,…,l
s
不全为零,使得 k
1
γ
1
+k
2
γ
2
…+k
t
γ
t
+l
1
η
1
+l
2
η
2
+…+l
s
η
s
=0. 从而γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/TtT4777K
0
考研数学三
相关试题推荐
袋中有a只黑球,b只白球,现把球一只一只摸出,求第k次摸出黑球的概率(1≤k≤a+b).
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α5=(2,-1,4,1),求:(1)向量组的秩;(2)求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示.
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
一个家庭中有两个小孩.(1)已知其中有一个是女孩,求另一个也是女孩的概率;(2)已知第一胎是女孩,求第二胎也是女孩的概率.
(1)第一类曲线积分的积分弧L是_________的(定向、不定向);利用L的参数方程将这个积分化为定积分时,下限α必须____________上限β.(2)第二类曲线积分的积分弧L是____________的(定向、不定向);利用L的参数方程将这个积分
根据级数收敛与发散的定义判别下列级数的收敛性,并求出其中收敛级数的和:
根据题意可知方程组(Ⅱ)中方程组个数<未知数个数,从而(Ⅱ)必有无穷[*]
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
随机试题
此时考虑诊断为:不正确的处理是:
慢性阻塞性肺气肿最主要的并发症是
下列关于增溶剂的叙述正确的是
施工承包合同中,承包人一般应承担的义务包括()。
人民法院审理民事案件,依照法律规定实行()制度。
下列对概念结构的层次网络模型(Collinsetal,1969)的表述不正确的是()。
下列小题使用如下三个表部门.dbf:部门号C(8),部门名C(12),负责人C(8)职工.dbf:职工号C(10),部门号C(8),姓名C(8),性别C(2),出生日期D(8)工资.dbf:职工号C(10),基本工资N(8,2),津贴N(8,2),奖
Everymorning,Alliewakesupandaccompaniesherfriendtothewashroom.Sheturnsonthelight,soapsupawashcloth,andbegi
今年上市的苹果品种格外地多,我独爱皮儿青青、似乎尚未熟透的那种。周末和女友逛水果店,她挑最红最大的买,生怕春色不够似的;我则逗留在顶边上的柜台,那儿不起眼地堆着我一个冬天未见的青苹果。相争不下,索性各按自己的偏好买了一网兜,都很不服气的样子,暗笑对方不会享
A、Thecookingtechnologyhasbeenimprovedgreatly.B、Peoplenowadaystakecookingastheirhobby.C、Familymembersaredecreasi
最新回复
(
0
)