首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=x2+4y2+xy+2在区域D上的最大值与最小值, 其中D=。
求函数f(x,y)=x2+4y2+xy+2在区域D上的最大值与最小值, 其中D=。
admin
2020-05-09
67
问题
求函数f(x,y)=x
2
+4y
2
+xy+2在区域D上的最大值与最小值,
其中D=
。
选项
答案
区域D如图所示, [*] 函数f(x,y)=x
2
+4y
2
+xy+2在该区域上的最值问题分为两部分讨论,即边界上的条件极值及D内部的无条件极值。 [*] (1)L
1
:y=[*],将该条件代入f(x,y)=x
2
+4y
2
+xy+2,可得 [*], 求导得f
’
(x)=5x-5,解得驻点[*], 则[*]。 (2)L
2
:[*],令 F(x,y,λ)=x
2
+4y
2
+xy+2+[*], 求偏导,得 [*] 解得4组驻点[*],则 [*]。 (3)D内部, f(x,y)=x
2
+4y
2
+xy+2, 求此函数的驻点,[*] 解得驻点为(0,0),则f(0,0)=2。 通过比较可知,最大值为[*]=7,最小值为f(0,0)=2。
解析
转载请注明原文地址:https://kaotiyun.com/show/U284777K
0
考研数学二
相关试题推荐
设X1,X2,…,Xn(n>1)是取自总体X的一个简单随机样本,.在下列四种情况下,分别求,E(S2).(1)X服从B(1,p);(2)X服从E(λ);(3)X服从N(μ,σ2).
设A为n阶矩阵且,r(A)=n-1.证明:存在常数k,使得(A*)2=kA*.
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a,b为何值时,(1)β不能用α1,α2,α3线性表示;(2)β能用α1,α2,α3唯一地线性表示,求表示式;(3)β能用
已知线性方程组讨论参数p,t取何值时,方程组有解、无解;当有解时,试用其导出组的基础解系表示通解.
求使不等式对所有的自然数n都成立的最大的数α和最小的数β
求常数m,n,使得=3.
设n阶矩阵A的秩为1,试证:(1)A可以表示成n×1矩阵和1×n矩阵的乘积;(2)存在常数μ,使得Ak=μk-1A
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
(94年)设(1)求函数的增减区间及极值;(2)求函数图形的凹凸区间及拐点:(3)求其渐近线;(4)作出其图形.
下列命题中①如果矩阵AB=E,则A可逆且A一1=B;②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E;③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。正确的是()
随机试题
有一个可以存放n件产品的缓冲,今有m个生产者,每个生产者每次生产一件物品放入缓冲器中;还有k个消费者,每个消费者每次可从缓冲器中取出一件物品去消费;不允许有两个或两个以上的生产者(或消费者)同时去存物品(或取物品),但允许有一个生产者(或消费者)在存物品(
托马斯公理
一新生儿患Rh溶血病,以下哪种情况不会出现
引发疮疡的最常见外邪是
钢衬板组合楼板的自重轻,可以建造的高度更高。()
上例的货物进口的转关方式是()。该转关货物应在电子数据申报之日起()内向进境地海关申报。
企业为了满足经营业务活动的正常波动所形成的支付需要而产生的筹资动机是()。
开展秘书协调工作时,可以利用的方式包括()。
()对于灵感相当于工作对于()
Foreachblank,choosethebestanswerfromthefourchoicesandwritedownontheanswersheet.Whenwejusthadtextonscr
最新回复
(
0
)