首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=x2+4y2+xy+2在区域D上的最大值与最小值, 其中D=。
求函数f(x,y)=x2+4y2+xy+2在区域D上的最大值与最小值, 其中D=。
admin
2020-05-09
50
问题
求函数f(x,y)=x
2
+4y
2
+xy+2在区域D上的最大值与最小值,
其中D=
。
选项
答案
区域D如图所示, [*] 函数f(x,y)=x
2
+4y
2
+xy+2在该区域上的最值问题分为两部分讨论,即边界上的条件极值及D内部的无条件极值。 [*] (1)L
1
:y=[*],将该条件代入f(x,y)=x
2
+4y
2
+xy+2,可得 [*], 求导得f
’
(x)=5x-5,解得驻点[*], 则[*]。 (2)L
2
:[*],令 F(x,y,λ)=x
2
+4y
2
+xy+2+[*], 求偏导,得 [*] 解得4组驻点[*],则 [*]。 (3)D内部, f(x,y)=x
2
+4y
2
+xy+2, 求此函数的驻点,[*] 解得驻点为(0,0),则f(0,0)=2。 通过比较可知,最大值为[*]=7,最小值为f(0,0)=2。
解析
转载请注明原文地址:https://kaotiyun.com/show/U284777K
0
考研数学二
相关试题推荐
计算积分
∫-22(χ+3χ+4)dχ.
设A,B是两个n阶实对称矩阵,并且A正定.证明:(1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵;(2)当|ε|充分小时,A+εB仍是正定矩阵.
已知的一个特征向量。问A能不能相似对角化?并说明理由。
函数f(x)=x3与g(x)=x2+l在区间[1,2]上是否满足柯西定理的所有条件?如满足,请求出定理中的数值ε.
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0,证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);(2)在(a,b)内至少存在一点η,η≠ξ,使得f"(
设D是χOy平面上以(1,1),(-1,1),(-1,-1)为顶点的三角形区域,D1为区域D位于第一象限的部分,则(χy+cosχsiny)dσ等于().
设二维随机变量(X,Y)在平面区域G上服从均匀分布,其中G是由x轴,y轴以及直线y=2x+1所围成的三角形域,则(X,Y)的关于X的边缘概率密度为()
设求函数f(x)的单调性区间与正、负值区间.(Ⅱ)求曲线y=f(x)与x轴所围成的封闭图形的面积.
设z=f(χ,y)=χ2arctan-y2arctan,则=_______.
随机试题
下列的哪一种心脏病以收缩功能不全心衰为主要特征
A.肺肾气虚B.肺气虚C.脾肺气虚D.心肺气虚E.肾气不固久病咳喘,胸闷心悸,乏力少气,自汗声低,舌淡脉弱。其证候是()
男性患者,64岁,患原发性高血压30年,肾功能不全3年,现尿少,浮肿,血钾为5.6mmol/L,哪类降压药不能应用( )。
A.产生协同作用,增强药效B.延缓或减少耐药性的发生C.形成可溶性复合物,有利于吸收D.改变尿液pH,有利于排泄E.利用药物间的拮抗作用,克服药物的不良反应吗啡与阿托品联合使用可()。
主持调节血量的脏是主持统摄血液的脏是
一个合同被法院确认为可撤销合同。甲、乙双方约定的违约金为4万元,合同履行阶段双方各受到了2万元的经济损失。法院判定双方都有过错,但甲方是主要过错方,应承担75%的过错责任。则损失的承担应为( )。
下列几种工程项目组织管理模式中,工程造价控制难度较大的模式是()。
秦始皇陵陵园的东部设有寝殿,开帝陵设寝的先例。()
在科技界也同样存在着性别歧视,《科技时报》报道,在过去的二十年间,女性从事科技工作的人数虽然有所增长,但是在各类科技奖项的评选中,男女获奖比例仅为12:1。以下哪项对上述表面上的矛盾做出了最恰当的解释?
(46)Itisknownthatthebrainshrinksasthebodyages,buttheeffectsonmentalabilityaredifferentfrompersontoperson.
最新回复
(
0
)