首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1999年)设f(χ)是区间[0,+∞)上单调减少且非负的连续函数,a1=f(k)-∫1nf(χ)dχ(n=1,2,…),证明数列{an}的极限存在.
(1999年)设f(χ)是区间[0,+∞)上单调减少且非负的连续函数,a1=f(k)-∫1nf(χ)dχ(n=1,2,…),证明数列{an}的极限存在.
admin
2019-06-09
75
问题
(1999年)设f(χ)是区间[0,+∞)上单调减少且非负的连续函数,a
1
=
f(k)-∫
1
n
f(χ)dχ(n=1,2,…),证明数列{a
n
}的极限存在.
选项
答案
由题设可知 [*] 则数列{a
n
)下有界,又 a
n+1
-a
n
=f(n+1)-∫
n
n+1
f(χ)dχ≤0 则数列{a
n
}单调下降,由单调有界准则知数列{a
n
}有极限.
解析
转载请注明原文地址:https://kaotiyun.com/show/eeV4777K
0
考研数学二
相关试题推荐
用拉格朗日乘数法计算下列各题:(1)欲围一个面积为60m2的矩形场地,正面所用材料每米造价10元,其余三面每米造价5元.求场地长、宽各为多少米时,所用材料费最少?(2)用a元购料,建造一个宽与深相同的长方体水池,已知四周的单位面积材料费为底面单位面积材
曲线y=的斜渐近线方程为_________。
设函数f(x)==___________。
函数y=与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。求的值;
设函数μ=f(x,y)具有二阶连续偏导数,且满足等式=0,确定a,b的值,使等式通过变换ξ=x+ay,η=x+by可化简为=0。
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线yf(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕x轴旋转一周所得立体的体积值是该曲边梯形面积值的πt倍,求该曲线方程。
二次型f(x1,x2,x3)=(x1+2x2+a3x3)(x1+5x2+b3x3)的合同规范形为_________。
已知齐次线性方程组的所有解都是方程b1x1+b2x2+…+bnxn=0的解。试证明线性方程组有解。
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明(I)的逆命题成立。
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问£为多少时此质点的速度为?并求到此时刻该质点所经过的路程.
随机试题
HDLC是面向()的数据链路控制规程。
何谓腹膜内位器官?
患者,男,20岁。多发性疖肿,红、肿、热、痛,部分溃破流出黄脓,发热口渴,大便干结,小便短赤,舌苔薄黄,脉数。治疗应首选
等比累进还款法,通常比例控制在0~100%之间,且经计算后的任意一期还款计划中的本金或利息不得小于()。
在对消费者行为进行分析的过程中,对消费者偏好做出的假定不包括()。
与启发性原则在教学中贯彻要求不符的是()。
阐述革命根据地和解放区教育体制的构成特点及作用。
设函数f(u)可导,y=f(x2)当自变量x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=_________.
(2017年)求
多线程是Java程序的【】机制,它能同步共享数据、处理不同事件。
最新回复
(
0
)