首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Aχ=β的通解为(-1,1,0,2)T+k(1,-1,2,0)T,则 (Ⅰ)β能否由α1,α2,α3线性表示?为什么? (Ⅱ)求α1,α2,α3,α4,β的一个极大
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Aχ=β的通解为(-1,1,0,2)T+k(1,-1,2,0)T,则 (Ⅰ)β能否由α1,α2,α3线性表示?为什么? (Ⅱ)求α1,α2,α3,α4,β的一个极大
admin
2017-11-09
81
问题
设α
1
,α
2
,α
3
,α
4
,β为4维列向量,A=(α
1
,α
2
,α
3
,α
4
),若Aχ=β的通解为(-1,1,0,2)
T
+k(1,-1,2,0)
T
,则
(Ⅰ)β能否由α
1
,α
2
,α
3
线性表示?为什么?
(Ⅱ)求α
1
,α
2
,α
3
,α
4
,β的一个极大无关组.
选项
答案
(Ⅰ)假设可以,即β=k
1
α
1
+k
2
α
2
+k
3
α
3
,则(k
1
,k
2
,k
3
,0)
T
是Aχ=β的解. 从而(k
1
,k
2
,k
3
,0)
T
-(-1,1,0,2)
T
=(k
1
+1,k
2
-1,k
3
,-2)
T
就是Aχ=0的解. 但是显然(k
1
+1,k
2
-1,k
3
-2)
T
和(1,-1,2,0)
T
线性无关. 所以β不可以由α
1
,α
2
,α
3
线性表示. (Ⅱ)因为(-1,1,0,2)
T
是Aχ=β的解,则β=-α
1
+α
2
+2α
4
. 又因为(1,-1,2,0)
T
是Aχ=0的解,则α
1
-α
2
+α
3
=0. 所以,β和α
3
都可由α
1
,α
2
,α
4
线性表示. 又由R(α
1
,α
2
,α
3
,α
4
,β)=R(α
1
,α
2
,α
3
,α
4
)=3,所以,α
1
,α
2
,α
4
是极大无关组.
解析
转载请注明原文地址:https://kaotiyun.com/show/U6X4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f’+(a)f’-一(b)<0.证明:存在ξ∈(a,b),使得f’(ξ)=0.
证明S(x)=满足微分方程y(4)一y=0并求和函数S(x).
设an>0(n一1,2,…)且{an}n=1∞单调减少,又级数的敛散性.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
用变量代换x=lnt将方程+e2xy=0化y关于t的方程,并求原方程的通解.
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=________.
设常数0<a<1,求
计算(a>0是常数).
求微分方程(4一x+y)dx一(2一x—y)dy=0的通解.
证明函数恒等式,arctanx=x∈(一1,1).
随机试题
简述建设中国特色社会主义的内容。
构成核酸的基本组成单位是
采用梁式支架方案设计应注意哪些问题?
预决算的监督包括()。
某企业的职工人数比上年增加5%,职工工资水平提高2%,则该企业职工工资总额比上年增长()。
Wasitfiveo’clockthefirebrokeout?
邓小平领导全党拨乱反正,抵制和批评“两个凡是”的直接思想武器是()。
A们在睡眠过程中会出现一种短暂爆发的、频率高的、波幅大的脑电波的阶段,这种阶段持续时间约为()
(1)Asrecentlyas50yearsago,economistsregardedthevitalityoftheeconomyasitsabilitytoproducethingspeoplewant(a
Intheearly1950stheresearcherswhoproducedthefirstcladglassopticalfiberswerenotthinkingofusingthemforcommunic
最新回复
(
0
)