首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Aχ=β的通解为(-1,1,0,2)T+k(1,-1,2,0)T,则 (Ⅰ)β能否由α1,α2,α3线性表示?为什么? (Ⅱ)求α1,α2,α3,α4,β的一个极大
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Aχ=β的通解为(-1,1,0,2)T+k(1,-1,2,0)T,则 (Ⅰ)β能否由α1,α2,α3线性表示?为什么? (Ⅱ)求α1,α2,α3,α4,β的一个极大
admin
2017-11-09
71
问题
设α
1
,α
2
,α
3
,α
4
,β为4维列向量,A=(α
1
,α
2
,α
3
,α
4
),若Aχ=β的通解为(-1,1,0,2)
T
+k(1,-1,2,0)
T
,则
(Ⅰ)β能否由α
1
,α
2
,α
3
线性表示?为什么?
(Ⅱ)求α
1
,α
2
,α
3
,α
4
,β的一个极大无关组.
选项
答案
(Ⅰ)假设可以,即β=k
1
α
1
+k
2
α
2
+k
3
α
3
,则(k
1
,k
2
,k
3
,0)
T
是Aχ=β的解. 从而(k
1
,k
2
,k
3
,0)
T
-(-1,1,0,2)
T
=(k
1
+1,k
2
-1,k
3
,-2)
T
就是Aχ=0的解. 但是显然(k
1
+1,k
2
-1,k
3
-2)
T
和(1,-1,2,0)
T
线性无关. 所以β不可以由α
1
,α
2
,α
3
线性表示. (Ⅱ)因为(-1,1,0,2)
T
是Aχ=β的解,则β=-α
1
+α
2
+2α
4
. 又因为(1,-1,2,0)
T
是Aχ=0的解,则α
1
-α
2
+α
3
=0. 所以,β和α
3
都可由α
1
,α
2
,α
4
线性表示. 又由R(α
1
,α
2
,α
3
,α
4
,β)=R(α
1
,α
2
,α
3
,α
4
)=3,所以,α
1
,α
2
,α
4
是极大无关组.
解析
转载请注明原文地址:https://kaotiyun.com/show/U6X4777K
0
考研数学三
相关试题推荐
设级数绝对收敛.
设有20人在某11层楼的底层乘电梯上楼,电梯在途中只下不上,每个乘客在哪一层下等可能,且乘客之间相互独立,求电梯停的次数的数学期望.
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是().
设随机向量(X,y)的概率密度f(x,y)满足f(x,y)=f(一x,y),且ρXY存在,则ρXY=()
积分=________.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
变换下列二次积分的积分次序:
求微分方程y"+2y’一3y—e-3x的通解.
已知某商品的需求量D和供给量S都是价格p的函数;D=D(p)=,S=S(p)=bp,其中a>0和b>0为常数;价格p是时间t的函数且满足方程=k[D(p)一S(p)](k为正的常数).假设当t=0时价格为1,试求需求量等于供给量时的均衡价格pe;
设函数f(x)在0<x≤1时f(x)=xsinx,其他的x满足关系式f(x)+k=2f(x+1),试求常数k使极限存在.
随机试题
我国金融监管与货币政策的协调内容主要有()。(2009年真题)
下列物质久置空气中会变质的是()
丹参所没有的药理作用是
秦代君主或皇帝针对一时之事而以命令形式发布的法律文件是:()。
在图示xy坐标系下,单元体的最大主应力σ1大致指向()。
国有资产的特征包括()。
工商行政管理机关是发票的主管机关,负责发票印制、领购、开具、取得、保管、缴销的管理和监督。()
某企业采用先进先出法计算发出甲材料的成本,2007年2月1日,结存甲材料200公斤,每公斤实际成本100元;2月10日购入甲材料300公斤,每公斤实际成本110元;2月15日发出甲材料400公斤。2月末,库存甲材料的实际成本为()元。
内蒙古森林旅游产品有哪些特点?
GregFocker,playedbyBenStiller,representsagenerationofAmericankids(1)_____inthe1980sonthephilosophythatanyac
最新回复
(
0
)