首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是3阶实对称矩阵,其主对角线上元素都是0,并且α=(1,2,-1)T满足Aα=2α. 求正交矩阵P使P-1AP可相似对角化.
A是3阶实对称矩阵,其主对角线上元素都是0,并且α=(1,2,-1)T满足Aα=2α. 求正交矩阵P使P-1AP可相似对角化.
admin
2017-06-14
40
问题
A是3阶实对称矩阵,其主对角线上元素都是0,并且α=(1,2,-1)
T
满足Aα=2α.
求正交矩阵P使P
-1
AP可相似对角化.
选项
答案
由矩阵A的特征多项式 [*] 得到矩阵A的特征值为λ
1
=λ
2
=2, λ
3
=-4. 对于λ=2,由(2E—A)x=0, [*] 得到属于λ=2的特征向量α
1
=(1,2,-1)
T
,α
2
=(1,0,1)
T
. 对于λ=-4,由(-4E—A)x=0, [*] 得到属于λ=-4的特征向量α
3
=(-1,1,1)
T
. 因为α
1
,α
2
已正交,故只需单位化,有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/UZu4777K
0
考研数学一
相关试题推荐
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一一个基础解系,则A*x=0的基础解系可为
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.矩阵A的特征值和特征向量.
设α=(1,1,1)T,β=(1,0,k)T,若矩阵αβT相似于,则k=__________.
设A为m阶实对称矩阵,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
若3维列向量α,β满足αTβ=2,其中αT为α为转置,则矩阵βαT的非零特征值为
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量口是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
随机试题
ManyofthecreaturesinRowling’sworldarenotreal,andmuchof_____happensinstrange.
有关烧伤合并ARDS应及时纠正缺氧的叙述不正确的是
关于领导一成员交换理论的陈述,不正确的是()。
影响财政收入规模的主要因素有()。
介绍杭州西湖时,先从其概况、传说、成因讲起,继而带出“一山、二堤、三岛”,这种讲解方法称为()。
所有的恐龙都是腿部直立地“站在”地面上的,这不同手冷血爬行动物四肢趴伏在地面上:恐龙的骨组织构造与温血哺乳动物的骨组织构造相似;恐龙的肺部结构和温血动物非常相近;在现代的生态系统中(例如非洲草原),温血的捕食者(例如狮子)与被捕食者(例如羚羊)之间的比值是
设随机变量X服从正态分布N(μ,),Y服从正态分布N(μ,),且P{|X-μ1|<1}>P{|Y-μ2|<1}。则必有()
【C1】______London’sHeathrowAirportisthebusiestinternationalairportinEurope,Amsterdam’sSchipholAirporthasalwayscl
Bettywouldrathergohomenowthan______withtheboringboyforonemoreminute.
StepstoMoreHappinessTurningPointsThereis,formanyofus,amomentinlifewhenwemakeachoicethatchangesusfore
最新回复
(
0
)