首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
admin
2013-04-04
80
问题
设A为n阶实矩阵,A
T
是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):A
T
AX=0,必有
选项
A、(Ⅱ)的解是(I)的解,(I)的解也是(Ⅱ)的解.
B、(Ⅱ)的解是(I)的解,但(I)的解不是(Ⅱ)的解.
C、(I)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(I)的解.
D、(I)的解是(Ⅱ)的解,但(Ⅱ)的解不是(I)的解.
答案
解析
若η是(I)的解,则Aη=0,那么(A
T
A)η=A
T
(Aη)=A
T
0=0,即η是(Ⅱ)的解。
若a是(Ⅱ)的解,有A
T
Aα=0,用α
T
左乘得α
T
A
T
Aα=0.即(Aα)
T
(Aα)=0.亦即Aα自己的内
积(Aα,Aα)=0,故必有Aα=0,即α是(I)的解.
所以(I)与(Ⅱ)同解,故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/QX54777K
0
考研数学一
相关试题推荐
(18年)若,则
[2015年]设矩阵.若集合Ω={1,2},则线性方程组AX=b有无穷多解的充分必要条件为().
设a1-x(cos-1),a2=),a3=-1,当x→0+时,以上三个无穷小量按照从低阶到高阶的排序是()
(2006年)设α1,α2,…,αs均为n维列向量一是m×n矩阵,下列选项正确的是
设A,B为满足AB=O的任意两个非零矩阵,则必有()
(2002年试题,二)设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△),的线性主部为0.1,则f’(1)=().
给定椭球体在第一象限的部分.在何处的切平面与三个坐标面围成的空间区域的体积最小.
已知4阶方阵A=(α1,α2,α3,α4),其中α1,α2,α3,α4均为4维列向量,且α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设A为3阶矩阵,α1,α2,α3为三个线性无关的向量组,已知Aα1=2α1+α2+α3,Aα2=3α1-α3,Aα3=-α3.(Ⅰ)求|A*+2E|;(Ⅱ)判断A是否可相似对角化,说明理由.
随机试题
LPG表示液化石油气。()
诊断丹毒最有意义的临床表现是
高血压病非药物治疗的措施有()
甲状腺功能亢进时.腹泻的主要发生机制是
A.Down综合征B.掌跖角化一牙周破坏综合征C.白细胞功能异常D.艾滋病E.坏死性溃疡性牙周炎以上属病毒感染性疾病的是
国家需要重点扶持的高新技术企业,减按()的税率征收企业所得税。
利用水泵叶轮混合时,应符合的条件有()。
在公司财务中,流动负债是指()以内到期的债务。
基金的募集一般要经过()四个步骤。
根据《民法通则》规定,诉讼时效期间从事当事人知道或应当知道权利被侵害时起超过5年的,人民法院不予以保护。()
最新回复
(
0
)