首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
admin
2013-04-04
72
问题
设A为n阶实矩阵,A
T
是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):A
T
AX=0,必有
选项
A、(Ⅱ)的解是(I)的解,(I)的解也是(Ⅱ)的解.
B、(Ⅱ)的解是(I)的解,但(I)的解不是(Ⅱ)的解.
C、(I)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(I)的解.
D、(I)的解是(Ⅱ)的解,但(Ⅱ)的解不是(I)的解.
答案
解析
若η是(I)的解,则Aη=0,那么(A
T
A)η=A
T
(Aη)=A
T
0=0,即η是(Ⅱ)的解。
若a是(Ⅱ)的解,有A
T
Aα=0,用α
T
左乘得α
T
A
T
Aα=0.即(Aα)
T
(Aα)=0.亦即Aα自己的内
积(Aα,Aα)=0,故必有Aα=0,即α是(I)的解.
所以(I)与(Ⅱ)同解,故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/QX54777K
0
考研数学一
相关试题推荐
微分方程y"一λ2y=eλx+e一λx(λ>0)的特解形式为
已知微分方程y″+ay′+by=cex的通解为y=(C1+C2x)e—x+ex,则a,b,c依次为()
(96年)设函数f(x)在区间(一δ,δ)内有定义,若当x∈(一δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的
设y=y(z)是二阶常系数微分方程y"+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限()
已知矩阵A=,则()
证明n阶矩阵相似。
设二次型f=x21+x22+x23+2αx1x2+2βx2x3+2x1x3经正交变换x=Py化成f=y22+2y23,其中x=(x1,x2,x3)T和y=(y1,y2,y3)T都是3维列向量,P是3阶正交矩阵.试求常数α,β.
设x为n维列向量,且xTx=1,若A=E-xxT,则|A|=0。
设向量组α1,α2,α3是Ax=b的3个解向量,且r(A)=1,α1+α2=(1,2,3)T,α2+α3=(0,-1,1)T,α3+α1=(1,0,-1)T,求Ax=b的通解.
已知方程组(Ⅰ)与方程组(Ⅱ)是同解方程组,求参数a,b,c.
随机试题
壁细胞分泌的物质有
A.累及部位多,症状出现的频繁,对患儿情绪、心理影响较大B.症状持续时间较长,但对患者社会功能影响相对较小C.预后良好,大多数患儿症状自行好转D.大多数患者症状持续终生E.病情严重,部分患儿会过早夭折慢性运动或发声抽动障碍
下列哪项不应作会阴切开
对历史文化保护区内重点保护地段的建设控制指标和规定,是城市()内容。
根据《建设工程工程量清单计价规范》,一般情况下,编制招标控制价采用的材料优先选用()。
税收能否转嫁及转嫁的程度,受()等因素的影响与制约。
某地大雪,一小区水管、电线被冻坏,居民到居委会闹事,你是居委会负责人。你怎么办?
将200块糖分给甲、乙、丙三人,甲的糖比乙的2倍还要多,乙的糖比丙的3倍还要多,甲至少有多少块糖?
根据我国现行宪法和法律,以下可以具有中国国籍的是()。
有些外科手术需要一种特殊类型的线带,使外科伤口缝合达到10天,这是外科伤口需要线带的最长时间。D型带是这种线带的一个新品种。D型带的销售人员声称D型带将会提高治疗功效,因为D型带的黏附时间是目前使用的线带的两倍长。以下哪项如果成立,最能说明D型带销售
最新回复
(
0
)