首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称矩阵,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设A为m阶实对称矩阵,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
admin
2013-04-04
47
问题
设A为m阶实对称矩阵,B为m×n实矩阵,B
T
为B的转置矩阵,试证:B
T
AB为正定矩阵的充分必要条件是B的秩r(B)=n.
选项
答案
必要性.设B
T
AB为正定矩阵,按定义V x≠0,恒有x
T
(B
T
AB)x>0.即V x≠0,恒有(Bx)
T
A(Bx)>0.即V x≠0,恒有Bx≠0.齐次线性方程组Bx=0只有零解,故r(B)=n. 充分性.因(B
T
AB)
T
=B
T
A
T
(B
T
)
T
=B
T
AB,知B
T
AB为实对称矩阵. 若r(B)=n,则齐次方程组Bx=0 有零解,那么V x≠0必有Bx≠0. 又A为正定矩阵,所以对Bx≠0,恒有(Bx)
T
A(Bx)>0. 即当x≠0时,x
T
(B
T
AB)x>0,故B
T
AB为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/sX54777K
0
考研数学一
相关试题推荐
(2009年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a).(Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且f′(χ
已知f(x)=设F(x)=∫1xf(t)dt.(0≤x≤2)则F(x)为
微分方程y"一λ2y=eλx+e一λx(λ>0)的特解形式为
[2017年]设A为3阶矩阵,P=[α1,α2,α3]为可逆矩阵,且P-1AP=,则A(α1+α2+α3)=().
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a33x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
(15年)设函数f(x)=x+aln(1+x)+bxsinx,g(x)=kx3.若f(x)与g(x)在x→0时是等价无穷小,求a,b,k的值.
[2013年]当x→0时,1一cosx·cos2x·cos3x与axn为等价无穷小,求n与a的值.
求抛物面壳的质量,此抛物面壳的面密度为z
将下列曲线化为参数方程:
设函数y=y(x)由参数方程确定,则=________.
随机试题
A.血清学鉴定B.血清学诊断C.两者均可D.二者均不可
民主党派的性质。
可以完全治愈,不留后遗症的关节炎是
下列镇痛药属于麻醉药品的是
当项目评估中有若干个变量,每个变量又有多种甚至无限多种取值时,进行风险分析的方法一般采用()。[2003年考题]
建设项目投保“建筑工程一切险”,承保的危险范围包括( )造成的损失。
根据以下表格资料,回答问题。下列选项中,属于农村老年人生活保障的主要来源的是()。
在开发的软件产品完成系统测试之后,作为最终产品应将其存入(324),等待交付用户或现场安装。
Whatisthemainpurposeofthelecture?
Commutershavea40percentgreaterriskofendingupdivorced,accordingtoauniversitystudy.【C1】______youarereading
最新回复
(
0
)