首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T 是方程组 Ax=0的一一个基础解系,则A*x=0的基础解系可为
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T 是方程组 Ax=0的一一个基础解系,则A*x=0的基础解系可为
admin
2013-04-04
35
问题
设A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵,A
*
为A的伴随矩阵.若(1,0,1,0)
T
是方程组
Ax=0的一一个基础解系,则A
*
x=0的基础解系可为
选项
A、α
1
,α
3
.
B、α
1
,α
2
.
C、α
1
,α
2
,α
3
.
D、α
2
,α
3
,α
4
.
答案
D
解析
本题没有给出具体的方程组,因而求解应当由解的结构、由秩开始.
因为Ax=0只有1个线性无关的解,即n-r(A)=1,从而r(A)=3.那么r(A
*
)=1 n-r(A
*
)=4-1=3.故A
*
x=0的基础解系中有3个线性无关的解,可见选项(A)、(B)均错误.
再由A
*
A=丨A丨E=0,知A的列向量全是A
*
x=0的解,而秩r(A)=3,故A的列向量中必有3个线性无关.
最后,因向量(1,0,1,0)
T
是Ax=0的解,故
=(α
1
,α
2
,α
3
,α
4
)
即α
1
+α
3
=0,
说明α
1
,α
3
线性相关α
1
,α
2
,α
3
线性相关,由此可知选项(C)错误.从而应选(D).
用排除法.求出r(A
*
)=3,排除选项(A),(B);由α
1
+α
3
=0,即α
1
,α
3
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/aH54777K
0
考研数学一
相关试题推荐
设m,n均是正整数,则反常积分的收敛性
如图1—3—13,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于
设二次型f(x1,x2,x3)=a(x12,x22,x32)+2x1x2+2x2x3+2x1x3的正、负惯性指数分别为1,2,则
(00年)具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是
设n阶矩阵A的各行元素之和均为0,且A的伴随矩阵A*≠O,则线性方程组Ax=0的通解为__________________.
曲线y=y(x)可表示为x=t3-t,y=t4+t,t为参数,证明:y=y(x)在t=0处为拐点。
袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,若以X、Y、Z分别表示两次取球所取得的红、黑与白球的个数.求二维随机变量(X,Y)的概率分布.
一个盒子内放有12个大小相同的球,其中有5个红球,4个白球,3个黑球.第一次随机地摸出2个球,观察后不放回,第二次随机地摸出3个球,记Xi表示第i次摸到的红球的数目(i=1,2);Yj表示第j次摸到的白球数,求:在分别已知X2=j(j=0,1,2,3)
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x
随机试题
对于晶体三极管来说,无论是PNP管还是NPN管,都可看成两只二极管反极性串联而成。()
《马伶传》一文“乃走事昆山”中“昆山”所用的修辞格是【】
眶下间隙感染向颅内扩散,并发海绵窦血栓性静脉炎,其扩散途径通常是
A.甘、微寒B.苦、寒C.甘、寒D.甘、淡、寒E.甘、淡、平车前子的性味特点是
下列关于施工质量评定表的使用说法正确的是()。
可能造成土壤退化的人类活动是()。
西周的罪名大体可以分为以下哪几种()
全面建成小康社会,强调的不仅是“小康”,而且更重要的也是更难做到的是“全面”。以下内容正确的是
下列关于虚拟存储器的叙述中,哪些是正确的?()
Oneeveningin1993,TrevorBayliswaswatchingaprogrammeontelevisionabouttheAIDSepidemicinAfrica.Theprogrammeexpla
最新回复
(
0
)