首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
admin
2021-11-25
77
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.证明:
存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
选项
答案
令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0 由罗尔定理,存在η
1
∈(a,c),η
2
∈(c,b),使得g’(η
1
)=g’(η
2
)=0 而g’(x)=e
-x
[f’(x)-f(x)]且e
-x
≠0,所以f’(η
1
)-f(η
1
)=0,f’(η
2
)-f(η
2
)=0 令ψ(x)=e
-2x
[f’(x)-f(x)],ψ(η
1
)=ψ(η
2
)=0 由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得ψ’(η)=0 而ψ’(x)=e
-2x
[f"(x)-3f’(x)+2f(x)]且e
-2x
≠0 所以f"(η)-3f’(η)+2f(η)=0
解析
转载请注明原文地址:https://kaotiyun.com/show/V7y4777K
0
考研数学二
相关试题推荐
计算二重积分,其中积分区域D是由抛物线y=x2和圆x2+y2=2及x轴在第一象限所围成的平面区域。
[*]
曲线y=x(x一1)(2一x)与x轴所围成图形面积可表示为()
设函数f(x)二阶可导,且f’(x)>0,f"(x)>0,△y=f(x+△x)-f(x),其中△x
设f(x)=|x|sin2x,则使导数存在的最高阶数n=()
设三阶矩阵A的特征值为-1,1,2,其对应的特征向量为α1,α2,α3,令P=(3α2,-α3,2α1),则P-1AP等于().
设f(x)在点x=x0处可导,且f(x0)=0,则f’(x0)=0是|f(x)|在x0可导的()条件.
微分方程y〞-y=eχ+1的一个特解应具有形式(式中a,b为常数)().
设周期函数f(x)在(-∞,+∞)内可导,周期为4,又,则曲线y=f(x)在(5,f(5))点处的切线斜率为
求二元函数zf(x,y)=x2y(4一x一y)在直线x+y=6,x轴与y轴围成的闭区域D上的最大值与最小值。
随机试题
A.凝血活酶形成障碍B.凝血酶形成障碍C.纤维蛋白形成障碍D.血小板质或量的异常E.血管壁的异常凝血时间延长,血浆凝血酶原时间正常,白陶土部分凝血活酶时间延长。是由于
血清、抗毒素等可用下列哪种方法除菌
患者,男,20岁。发热、食欲缺乏伴尿黄5天,曾有进食不洁食物。查体:巩膜黄染,肝肋下1.5cm。考虑为急性病毒性肝炎。为明确诊断,首选的检查是
虚实辨证可辨别
在选择长期合作关系供应商的标准中,对总成本的评价时,总成本除了考虑价格和费用外,还应考虑:取得成本、作业成本和()。
下列关于抵押人负有维护抵押房地产义务的表述,不正确的是()
“卡路里”是热量单位。物理学上规定,(),简称“卡”,在汉语中,把“千卡”称为“大卡”。
决定我国自然环境差异的基本因素是:
作为整个预算编制起点的是()。(上海财经大学2012真题)
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
最新回复
(
0
)