首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a); (Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
admin
2020-03-16
127
问题
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f
’
(ξ)(b一a);
(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
f
’
(x)=A,则f
+
’
(0)存在,且f
+
’
(0)=A。
选项
答案
(I)作辅助函数φ(x)=f(x)一f(a)一[*](x一a),易验证φ(x)满足: φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且 φ
’
(x)=f
’
(x)一[*]。 根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ
’
(ξ)=0,即 f
’
(ξ)一[*]=0, 所以f(b)一f(a)=f
’
(ξ)(b一a)。 (Ⅱ)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此 由拉格朗日中值定理可得,存在ξ
x
0
∈(0,x
0
)[*](0,δ),使得 f
’
(ξ
x
0
)=[*]。 (*) 又由于[*]=A,对(*)式两边取x
0
→0
+
时的极限: f
+
’
(0)=[*]=A, 故f
+
’
(0)存在,且f
+
’
(0)=A。
解析
转载请注明原文地址:https://kaotiyun.com/show/FdA4777K
0
考研数学二
相关试题推荐
设A=(aij)是三阶正交矩阵,其中a33=—1,b=(0,0,5)T,则线性方程组Ax=b必有的一个解是_______。
[2008年](I)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得f(x)dx=f(η)(b一a).(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点
[2003年]设函数f(x)=问a为何值时,f(x)在x=0处连续;a为何值时,x=0是f(x)的可去间断点?
计算定积分
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。计算PTDP,其中
设A,B均是n阶矩阵,且r(A)+r(B)<n,证明A,B有公共的特征向量.
设F(χ)=,试求:(Ⅰ)F(χ)的极值;(Ⅱ)曲线y=F(χ)的拐点的横坐标;(Ⅲ)∫-23χ2F′(χ)dχ.
设有微分方程y’-2y=ψ(x),其中试求在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,满足条件y(0)=0.
设(χ-3sin3χ+aχ-2+b)=0,求a,b.
随机试题
社会主义初级阶段不是泛指任何国家进入社会主义都会经历的起始阶段,而是特指我国生产力落后、商品经济不发达条件下建设社会主义必然要经历的特定阶段。我国进入社会主义初级阶段的标志是()
某供热管网的设计压力为1.6MPa,其严密性试验压力应为()MPa。
A.牙槽嵴组B.水平组C.斜行组D.根尖组E.根间组只存在于颊舌侧的牙周膜纤维,其功能是将牙齿向牙槽窝内牵引,保持牙齿直立.抵抗侧方力
表面活性剂系指分子中同时具有亲水基团和亲油基团,能使液体的表面张力显著下降的物质,具有很强的表面活性,常用做增溶剂、起泡剂、去污剂、消泡剂、抑菌剂或消毒剂、乳化剂、润湿剂等。为了破坏浸提过程中的泡沫,可加少量消泡剂,以下属于消泡剂的是()。
A.红花B.大黄C.巴戟天D.牡丹皮E.槐米以上药材在秋冬季节地上部分将枯萎时及春初发芽前或刚露苗时采收的是()
单位工程质量验收合格应符合的规定包括()
某施工企业于2006年9月1日收到投资人投入的原材料一批,合同约定该批材料的价值为300万元,则这批材料应作为企业的()处理。
一般来说,在期数一定的情况下,随着折现率的提高,一定期限内的普通年金现值将逐渐变小。()
Inthepopularmind,theInternetistherealizationoftheglobalvillage,wheretheflowofinformationandideasisunimpeded
______,herealizedhemadetherightdecision.
最新回复
(
0
)