首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3). 证明: ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3). 证明: ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.
admin
2017-08-31
30
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).
证明:
ξ
1
,ξ
2
∈(0,3),使得f
’
(ξ
1
)=f
’
(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,F
’
=f(x), ∫
0
2
f(t)dt=F(2)一F(0)=F
’
(c)(2—0)=2f(c),其中0<c<2. 因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M,m≤[*]≤M, 由介值定理,存在x
0
∈[2,3],使得f(x
0
)=[*],即f(2)+f(3)=2f(x
0
), 于是f(0)=f(c)=f(x
0
), 由罗尔定理,存在ξ
1
∈(0,c)[*](0,3),ξ
2
∈(c,x
0
)[*](0,3),使得f
’
(ξ
1
)=f
’
(ξ
2
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/VJr4777K
0
考研数学一
相关试题推荐
[*]
下列结论正确的是().
设幂级数在x=-1处收敛,则级数
已知二次曲面x2+4y2+3z2+2axy+2xz+2(a-2)yz=1是椭球面,则a的取值为_______.
曲线y=x2(-1)的全部渐近线方程是_______.
设f(x)在(-∞,+∞)有连续的导数,且f(0)=0,f’(0)=1,(Ⅰ)求常数A使得F(x)在(-∞,+∞)连续.(Ⅱ)确定A后,求F’(x)并证明F’(x)在(-∞,+∞)连续.
设A,B,C是,n矩阵,并满足ABAC=E,则下列结论中不正确的是
设矩阵有一个特征值是3.(Ⅰ)求y的值;(Ⅱ)求正交矩阵P,使(AP)TAP为对角矩阵;(Ⅲ)判断矩阵A2是否为正定矩阵,并证明你的结论.
随机试题
A、It’swarmandwet.B、It’scoldandwet.C、It’scoolanddry.D、It’shotanddry.A
Anewcameasasurprisethatanelderlywomandiedyesterdayafter【21】knockeddownbyamotoristwhohadmadeno【22】tobrake(刹
某患者,男,59岁,BP140/95mmHg,他的血压属于()
脂质体由类脂质双分子层膜构成,其双分子层厚度约为4nm。类脂质膜的主要成分为磷脂和胆固醇。由于结构上类似生物膜,故脂质体又被称为“人工生物膜”。其在临床应用存在的问题主要有()。
根据包衣所用材料的不同,包衣片可分为()。
工程量清单汇总表中的项目包括()
个人信用贷款期限在1年(含1年)以内的,一般采取()的还款方式。
原持有的对被投资单位具有控制的长期股权投资,因部分处置等原因导致持股比例下降,不能再对被投资单位实施控制、共同控制或重大影响的,应改按金融工具确认和计量准则进行会计处理,丧失控制之日剩余股权的公允价值与账面价值之间的差额计入当期投资收益。()
在下列设置小海龟的基本命令中,()是转向命令。
Themajorityofthepopulationintheworldmightdrinkonlytwolitersofwateraday,buttheyconsumeabout3,000litersada
最新回复
(
0
)