首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3为三维线性无关列向量组,且有Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2. (1)求A的全部特征值; (2)A是否可对角化?
设A为三阶矩阵,α1,α2,α3为三维线性无关列向量组,且有Aα1=α2+α3,Aα2=α3+α1,Aα3=α1+α2. (1)求A的全部特征值; (2)A是否可对角化?
admin
2016-01-25
31
问题
设A为三阶矩阵,α
1
,α
2
,α
3
为三维线性无关列向量组,且有Aα
1
=α
2
+α
3
,Aα
2
=α
3
+α
1
,Aα
3
=α
1
+α
2
.
(1)求A的全部特征值;
(2)A是否可对角化?
选项
答案
(1)由题设知, A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
), A(α
2
-α
1
)=Aα
2
一Aα
1
=α
3
+α
1
一(α
2
+α
3
)=一(α
2
-α
1
), A(α
3
-α
1
)=Aα
3
一Aα
1
=α
1
+α
2
一(α
2
+α
3
)=一(α
3
-α
1
). 又因为α
1
,α
2
,α
3
线性无关,所以 α
1
+α
2
+α
3
≠0, α
2
-α
1
≠0, α
3
-α
1
≠0. 可得一1,2是A的特征值,α
2
-α
1
,α
3
-α
1
,α
1
+α
2
+α
3
是相应的特征向量. 又由α
1
,α
2
,α
3
线性无关,得α
2
-α
1
,α
3
-α
1
也线性无关,所以一1是A的二重特征值,即A的全部特征值为一1,一1,2. (2)由α
1
,α
2
,α
3
线性无关可证明α
2
-α
1
,α
3
-α
1
,α
1
+α
2
+α
3
线性无关. 事实上,由矩阵表示法: [α
2
-α
1
,α
3
-α
1
,α
1
+α
2
+α
3
]=[α
1
,α
2
,α
3
][*] 而α
1
,α
2
,α
3
线性无关,右边的三阶行列式不等于0,其矩阵可逆,故 α
2
-α
1
,α
3
-α
1
,α
1
+α
2
+α
3
线性无关,即矩阵A有三个线性无关的特征向量,故矩阵A为可对角化.
解析
利用所给的向量等式及特征值、特征向量的定义可求出A的全部特征值及三个线性无关的特征向量.
转载请注明原文地址:https://kaotiyun.com/show/VKU4777K
0
考研数学三
相关试题推荐
宪法是国家的根本法,是治国安邦的总章程,是党和人民意志的集中体现。下列属于我国宪法的基本原则的有
建设社会主义文化强国,必须提高国家文化软实力。提高国家文化软实力,要推动公共文化服务标准化、均等化,坚持
列宁说:“实践标准实质上决不能完全地证实或驳倒人类的任何表象。这个标准也是这样的‘不确定’,以便不让人的知识变成‘绝对’,同时它又是这样的确定,以便同唯心主义和不可知论的一切变种进行无情的斗争。”这表明
2016年9月,袁隆平领衔的超级杂交稻第五期攻关项目第二次测产验收在湖南某地进行,攻关品种“广湘24S/R900”的测产没有达到预期目标,未能通过验收。面对失败,袁隆平坦然接受。这一事例反映的认识道理是()。
材料1 北京大学援鄂医疗队全体“90后”党员: 来信收悉。在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,彰显了青春的蓬勃力量,交出了合格答卷。广大青年用行动证明,新时代的中国青年是好样的,
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
证明:在自变量的同一变化过程中,(1)若f(x)是无穷大,则1/f(x)是无穷小;(2)若f(x)是无穷小且f(x)≠0,则1/f(x)是无穷大。
求函数y=(x-1)eπ/2+arctanx的单调区间和极值,并求该函数图形的渐近线.
证明不等式:xarctanx≥ln(1+x2).
随机试题
子宫颈上皮内瘤变
国家的统一有利于
【】是通过网络接口卡与网络相连,能够将网络服务呈现给最终用户的智能设备。
属于消化腺的是【】
男,5个月,经常吐奶,24小时食管pH监测诊断为胃食管反流,治疗哪项不恰当
经济和社会领域的发展规划必须是以()为基础的。
制定教学策略的首要依据是()。
若X~γ2(n),证明:EX=n,DX=2n.
产品/服务资源的生命周期有四个阶段,分别是需求、获取、经营和管理、回收或分配。其中开发一种产品或一项服务,或者去获得开发中所需要的资源的阶段是
Work-lifeBalance:FlexAppealA)GeorginaBlizzardandNickyImriedecidedtheyneededtofindamoreflexibleworkingpatternw
最新回复
(
0
)