首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=∫—1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积。
设f(x)=∫—1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积。
admin
2019-05-11
67
问题
设f(x)=∫
—1
x
t|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积。
选项
答案
因为t|t|为奇函数,可知其原函数 f(x)=∫
—1
x
t|t|dt=∫
—1
0
t|t|dt+∫
0
x
t|t|dt 为偶函数,由f(一1)=0,得f(1)=0,即y=f(x)与x轴有交点(一1,0),(1,0)。 又由f’(x)=x|x|可知x<0时,f’(x) <0,故f(x)单调减少,因此f(x) <f(一1)=0(一1<x≤0)。 当x>0时,f’(x)=x|x|>0,故f(x)单调增加,所以当x>0时,y=f(x)与x轴有一交点(1,0)。 综上,y=f(x)与x轴交点仅有两个。 所以封闭曲线所围面积 A=∫
—1
1
|f(x)|dx=2∫
—1
0
|f(x)|dx。 当x<0时,f(x)=∫
—1
x
t|t|dt=∫
—1
x
一t
2
dt=[*](1+x
3
),因此 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/VNV4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αs为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αs线性无关.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…αn-1,β线性无关.
设α1,…,αm,β为m+1个n维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
求椭圆=1与椭圆=1所围成的公共部分的面积.
设直线y=aχ与抛物线y=χ2所围成的图形面积为S1,它们与直线χ=1所围成的图形面积为S2,且a<1.(1)确定a,使S1+S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕χ轴旋转一周所得旋转体的体积.
随机试题
男性,58岁,因脊髓型颈椎病3年加重4个月就诊,拟行颈椎前路手术治疗。护士在术后病情观察中最重要的是观察
25℃,在[Cu(NH3)4]SO4水溶液中,滴加BaCl2时有白色沉淀产生,滴加NaOH时无变化,而滴加Na2S时则有黑色沉淀生成,以上实验现象说明该溶液中(Ks为溶度积常数)()。
按土地管理法规定,因建设需要征用耕地的安置补助费,最高不得超过( )。
甲、乙公司于2015年3月10日签订买卖合同,3月15日甲公司发现自己对合同标的存有重大误解,遂于3月20日向法院请求撤销该合同,4月10日法院依法撤销该合同。下列表述中,符合《合同法》规定的是()。
在易变现率低的情况下,下列说法中不正确的是()。
垄断企业和寡头企业利用市场势力谋取过高利润所导致的一般价格水平的上涨是一种工资推动的通货膨胀。
在生产力的基本要素中,占主导地位的是()。
影响人体基础代谢的因素包括()。
FTP命令集因系统、版本而异,常用的命令如下。(54)有ASCII和二进制模式。(55)改变计算机的当前目录。(56)open建立同远程计算机的连接,close关闭连接。(57)put传送一个文件到远程计算机,put传送多个文件到远程计算机。(58)get
有三个关系R、S和T如下:则由关系R和S得到关系T的操作是
最新回复
(
0
)