首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=∫—1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积。
设f(x)=∫—1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积。
admin
2019-05-11
63
问题
设f(x)=∫
—1
x
t|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积。
选项
答案
因为t|t|为奇函数,可知其原函数 f(x)=∫
—1
x
t|t|dt=∫
—1
0
t|t|dt+∫
0
x
t|t|dt 为偶函数,由f(一1)=0,得f(1)=0,即y=f(x)与x轴有交点(一1,0),(1,0)。 又由f’(x)=x|x|可知x<0时,f’(x) <0,故f(x)单调减少,因此f(x) <f(一1)=0(一1<x≤0)。 当x>0时,f’(x)=x|x|>0,故f(x)单调增加,所以当x>0时,y=f(x)与x轴有一交点(1,0)。 综上,y=f(x)与x轴交点仅有两个。 所以封闭曲线所围面积 A=∫
—1
1
|f(x)|dx=2∫
—1
0
|f(x)|dx。 当x<0时,f(x)=∫
—1
x
t|t|dt=∫
—1
x
一t
2
dt=[*](1+x
3
),因此 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/VNV4777K
0
考研数学二
相关试题推荐
设抛物线y=aχ2+bχ+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=aχ2+bχ+c与抛物线y=-χ2+2χ所围图形的面积最小,求a,b,c的值.
设D={(χ,y)|0≤χ≤1,0≤y≤1},直线l:χ+y=t(t≥0),S(t)为正方形区域D位于l左下方的面积,求∫0χS(t)dt(χ≥0).
设f(χ)在[0,1]上可导,且|f′(χ)|<M,证明:
设A为,n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…αn-1,β线性无关.
设f(χ)二阶连续可导且f(0)=f′(0)=0,f〞(χ)>0.曲线y=f(χ)上任一点(χ,f(χ))(χ≠0)处作切线,此切线在χ轴上的截距为u,求.
设曲线y=lnχ与y=k相切,则公共切线为_______.
随机试题
下列关于甲状腺功能亢进症的术前准备,错误的是
下列哪项能刺激远端小管和集合管主细胞分泌K+
63岁男性,工人,因健忘,出门找不到路回家,常收藏破烂无用的东西,夜间兴奋不眠,已经半年而入院
患者男性,50岁。因旅游途中进食海鲜后1天出现右足趾及趾跖关节剧烈疼痛,伴红肿,有发热。既往发作过两次,每次发作一周左右可自行缓解,曾用过青霉素治疗效果不明显。查体:痛苦面容,呻吟。体温39.2℃,右足趾及趾跖关节红肿、压痛,局部皮温增高。血白细胞11.4
单位把账套建立起来以后,每个新的财务年度开始时,不再需要重建账套,只需要引入核算账套即可。()
根据《票据法》的规定,下列各项中,属于票据行为的有()。
下列债券中,风险最高的是()
中国古代园林的发展在()时期发生较大转折,转向崇尚自然。
穿过岑寂的碎片朱以撒那方不毛之地一直为我神往。像我这般珍惜故纸的人,常常会留意典籍上、画册上的一些残破纸片。这些纸片都没头没脑,残损得不像样了。这时我总是心弦一
Untillastspring,NiaParkerandtheotherkidsinherneighborhoodcommutedtoschoolonBus59.Butasfuelrose,theschool
最新回复
(
0
)