首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X1,X2,…,Xn独立同分布,X1的取值有四种可能,其概率分布分别为: p1=1-θ,p2=θ-θ2,p3=θ2-θ3,p4 =θ3, 记Nj为X1,X2,…,Xn中出现各种可能的结果的次数,N1+N2+N3+N4=n.确定a1,a2,a3,a4使为θ
设X1,X2,…,Xn独立同分布,X1的取值有四种可能,其概率分布分别为: p1=1-θ,p2=θ-θ2,p3=θ2-θ3,p4 =θ3, 记Nj为X1,X2,…,Xn中出现各种可能的结果的次数,N1+N2+N3+N4=n.确定a1,a2,a3,a4使为θ
admin
2016-09-19
48
问题
设X
1
,X
2
,…,X
n
独立同分布,X
1
的取值有四种可能,其概率分布分别为:
p
1
=1-θ,p
2
=θ-θ
2
,p
3
=θ
2
-θ
3
,p
4
=θ
3
,
记N
j
为X
1
,X
2
,…,X
n
中出现各种可能的结果的次数,N
1
+N
2
+N
3
+N
4
=n.确定a
1
,a
2
,a
3
,a
4
使
为θ的无偏估计.
选项
答案
由于N
i
~B(n,p
i
),i=1,2,3,4,所以E(N
i
)=np
i
,从而有: ET=[*]=a
1
n(1-θ)+a
2
n(θ-θ
2
)+a
3
n(θ
2
-θ
3
)+a
4
nθ
3
=na
1
+n(a
2
-a
1
)θ+n(a
3
-a
2
)θ
2
+n(a
4
-a
3
)θ
3
. 若使T是θ的无偏估计,即要求 [*] 解之得:a
1
=0,a
2
=a
3
=a
4
=[*] 即T=[*]是θ的无偏估计.
解析
转载请注明原文地址:https://kaotiyun.com/show/VjT4777K
0
考研数学三
相关试题推荐
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
设函数f(x)住[0,+∞)上连续,单调不减且f(0)≥0.试证函数在[0,+∞)上连续且单调不减(其中n>0).
设F1(x)与F2(x)分别为随机变量,X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取().
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
由题设,根据行列式的定义和数学期望的性质,有[*]
设函数f(x)存(0,+∞)上连续,对任意的正数a与b积分的值与a无关.若已知f(1)=1,则f(x)=________.
随机试题
古典民乐《春江花月夜》所属的审美范畴是【】
变形缝按()计算建筑面积?[2011年第17题]
一直径d=50cm输油管道,管中通过油的流量Q=0.1m3/s,20℃时油的运动粘滞系数v=150×10-6m/s,做模型试验时,要实现管道的动力相似,一般应选择()。
下列各项中,属于长期投资决策静态评价指标的是()。
在新课程改革中,教师的教学行为发生变化。下列选项中正确的是()。
天门中断楚江开,碧水东流至此回。_______,_______。(唐.李白《望天门山》)
肾血管性高血压发病特点,以下哪项是错误的
有人认为用电池驱动的电动车是解决未来空气污染问题的一个潜在方案,但他们却忽略了电池是要充电的,而目前我们的大多数电力都是通过燃烧有机燃料产生的,使用的电动车越多,就需要建越多的电厂,因为目前所有的电厂都在以最大的负荷运转。即使所有的汽车都被电动车替代,也不
《聊斋志异》中的《画皮篇》对于狞鬼有这样的描写:面翠色、齿如锯、身化为浓烟。这表明
Readthetextsinwhichtherearefivebriefintroductionsaboutfivefamousfilmstarsandtheirfilms.Forquestions61to65,
最新回复
(
0
)