首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 已知A有3个线性无关的特征向量,λ=2是A的2重特征值,试求可逆矩阵P,使P—1AP为对角形矩阵.
设 已知A有3个线性无关的特征向量,λ=2是A的2重特征值,试求可逆矩阵P,使P—1AP为对角形矩阵.
admin
2018-08-03
27
问题
设
已知A有3个线性无关的特征向量,λ=2是A的2重特征值,试求可逆矩阵P,使P
—1
AP为对角形矩阵.
选项
答案
由条件知方程组(2E一A)x=0的基础解系含2个向量,故2E—A的秩为1,得x=2,y=一2, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Vrg4777K
0
考研数学一
相关试题推荐
设总体X~N(0,8),Y~N(0,22),且X1及(Y1,Y2)分别为来自上述两个总体的样本,则~___________。
设随机变量X的密度函数为f(x)=e-|x|(一∞<x<+∞).(1)求E(X),D(X);(2)求Cov(X,|X|),问X,|X|是否不相关?(3)问X,|X|是否相互独立?
设X和Y分别表示扔n次硬币出现正面和反面的次数,则X,Y的相关系数为().
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
设A是正交矩阵,且|A|<0.证明:|E+A|=0.
令A=[*],方程组(I)可写为AX=b,方程组(II)、(III)可分别写为ATY=0及[*]=0.若方程组(I)有解,则r(A)=r(A:b),从而r(AT)=[*],又因为(Ⅲ)的解一定为(Ⅱ)的解,所以(Ⅱ)与(III)同解;反之,若(Ⅱ)与
设向量组(I)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(I)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5一α4的秩为4.
已知二维随机变量(X,Y)的概率密度为(Ⅰ)求(U,V)的概率分布;(Ⅱ)求U和V的相关系数ρ.
对于任意二随机变量X和Y,与命题“X和Y不相关”不等价的是
设随机变量X和Y的联合密度为(Ⅰ)试求X的概率密度f(x);(Ⅱ)试求事件“X大于Y”的概率P{X>Y};(Ⅲ)求条件概率P{Y>1|X<0.5}.
随机试题
白喉毒素应用于治疗肿瘤的根据是()
某工程项目估算总投资2200万元,其中施工估算价1000万元,设备采购估算1000万元,勘察估算43万元,设计估算100万元,监理估算价57万元。在施工招标过程中,业主委托该省建委进行招标,按照法律程序确定以公开招标的方式分阶段进行招标。[问题]
背景某施工单位承包一立井井筒与井底环行车场项目。在井筒施工中某一夜班,主提升绞车由司机张某一人值班,在下放吊桶时打盹,导致吊桶全速过放。当时李某正穿过吊桶下方去移动水泵,因躲闪不及被当场砸死。事故发生后,井下作业人员由于恐慌争先上井,杨某上半身被挤出吊桶
下列各项中,不属于消费税征收范围的是()。
当前我国乡村度假旅游需求虽然发展迅猛,却遇到了农家乐产品质量欠佳的情况。这种情况体现的是旅游供求()的矛盾。
下列各项财务指标中,能够提示公司每股股利与每股收益之间关系的是()。
采购物品定价的常用方法是()。
人民法院审理行政案件,是审查行政行为的()。
二战后初期,美国倡导成立“关贸总协定”的主要目的是()
经过20多年的自然保护,甘肃祁连山区野生动物的数量大大增加。活动于甘州一带的野生岩羊经常闯入牧场,侵食牧草,糟蹋草场。山丹马场放牧的羊时常被出没的狼群活活咬死。岩羊的天敌是雪豹和狼,山丹马场距甘州不过百余公里,但甘州的岩羊却未遭狼群侵害。如果以下
最新回复
(
0
)